精英家教网 > 高中数学 > 题目详情

【题目】在直三棱柱ABCA1B1C1中,AB=1,AC=2,BCDE分别是AC1BB1的中点,则直线DE与平面BB1C1C所成角的正弦值为________

【答案】

【解析】

如图,取AC的中点F,连接DFBF,则DFBEDFBE,∴DEBF,∴BF与平面BB1C1C所成角的正弦值为所求.∵AB=1,BCAC=2,∴ABBC,又ABBB1,∴AB⊥平面BB1C1C.作GFABBC于点G,则GF⊥平面BB1C1C,∴∠FBG为直线BF与平面BB1C1C所成的角.由条件知BGBCGFAB,∴tan∠FBG,∴∠FBG,∴sin∠FBG=sin,即直线DE与平面BB1C1C所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数 .

)讨论的单调性;

)当时,若 ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(其中为常数).

1)若直线与曲线恰好有一个公共点,求实数的值;

2)若,求直线被曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的离心率为.

(Ⅰ)若原点到直线x+y-b=0的距离为,求椭圆的方程;

(Ⅱ)设过椭圆的右焦点且倾斜角为45°的直线l和椭圆交于A,B两点,对于椭圆上任意一点M,总存在实数λ、μ,使等式成立,求λ2+μ2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=a-2ln x(a∈R).

(Ⅰ)当a=2时,求曲线f(x)在x=2处的切线方程;

(Ⅱ)若a>,且m,n分别为f(x)的极大值和极小值,S=m-n,求证:S<.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为自然对数的底数).

(Ⅰ)讨论的单调性;

(Ⅱ)若有两个零点的取值范围;

2在(1)的条件下,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).

(1)写出直线l的普通方程与曲线C的直角坐标方程;

(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856263)

已知抛物线y2=2px(p>0)的准线与x轴交于点N,过点N作圆M:(x-2)2y2=1的两条切线,切点为PQ,且|PQ|=.

(Ⅰ)求抛物线的方程;

(Ⅱ)过抛物线的焦点F作斜率为k1的直线与抛物线交于AB两点,AB两点的横坐标均不为2,连接AMBM并延长分别交抛物线于CD两点,设直线CD的斜率为k2,问是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x+1||2x﹣3|,g(x)=|x+1|+|x﹣a|

(l)求fx≥1的解集;

(2)若对任意的tR,sR,都有g(s)f(t).求a的取值范围.

查看答案和解析>>

同步练习册答案