精英家教网 > 高中数学 > 题目详情

【题目】已知圆与圆.

1)若圆与圆外切,求实数m的值;

2)在(1)的条件下,若直线l与圆的相交弦长为且过点,求直线l的方程.

【答案】(1);(2)直线l方程为:

【解析】

1)先根据圆的方程求出圆心坐标和半径,再由由圆与圆外切,可知两圆心的距离等于两圆半径之和,代入数据求解即可;

2)分析可知弦的垂直平分线过圆心,由勾股定理可求出圆心到直线的距离,再由直线l过点,可设出直线方程,分斜率存在和不存在两种情况,求出方程即可.

1

与圆外切,

2)由(1)得,圆的方程为

设圆心到直线l的距离,因为直线l与圆的相交弦长为,则有,代入数据解得

当直线l无斜率时:直线方程为.符合题意.

当直线l斜率为k时,则直线方程为

化为一般形式为

则圆心到直线l的距离,解得.

综上,直线l方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)经过点(1),F01)是C的一个焦点,过F点的动直线l交椭圆于AB两点.

1)求椭圆C的方程

2)是否存在定点M(异于点F),对任意的动直线l都有kMA+kMB0,若存在求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学分别做下面这道题目:在平面直角坐标系中,动点的距离比轴的距离大,求的轨迹.甲同学的解法是:解:设的坐标是,则根据题意可知

,化简得 ①当时,方程可变为;②这表示的是端点在原点、方向为轴正方向的射线,且不包括原点; ③当时,方程可变为 ④这表示以为焦点,以直线为准线的抛物线;⑤所以的轨迹为端点在原点、方向为轴正方向的射线,且不包括原点和以为焦点,以直线为准线的抛物线. 乙同学的解法是:解:因为动点的距离比轴的距离大. ①如图,过点轴的垂线,垂足为. .设直线与直线的交点为,则 ②即动点到直线的距离比轴的距离大 ③所以动点的距离与到直线的距离相等;④所以动点的轨迹是以为焦点,以直线为准线的抛物线; ⑤甲、乙两位同学中解答错误的是________(填或者),他的解答过程是从_____处开始出错的(请在横线上填写① 、②、③、④ 或⑤ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.命题.则ab中至少有一个不小于1”的逆命题是一个真命题

B.命题负数的平方是正数是特称命题

C.命题a,若,则是一个真命题

D.常数数列既是等差数列也是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点F为圆C的圆心.

求抛物线的方程与其准线方程;

直线l与圆C相切,交抛物线于AB两点;

若线段AB中点的纵坐标为,求直线l的方程;

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为轴,直线轴于点,为椭圆上的动点,的面积的最大值为1.

(1)求椭圆的方程;

(2)过点作两条直线与椭圆分别交于且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5分)《九章算术》竹九节问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )

A. 1B. C. D.

查看答案和解析>>

同步练习册答案