精英家教网 > 高中数学 > 题目详情

已知f(x)=数学公式
(1)求出它的定义域和值域;
(2)判断它的奇偶性、周期性和单调性.

解:(1)∵,∴(sinx-1)(sinx+1)<0,可得-1<sinx<1
∴函数f(x)的定义域为{x|x∈R且x≠+kπ,k∈Z}
∵t=,y=∈R
∴f(x)=的值域为R;
(2)∵=
而-==
∴f(-x)=-f(x),可得f(x)是其定义域上的奇函数;
==f(x)
∴f(x)是周期为2π的周期函数;
∵t==,t随着sinx的增大而减小,且∈(0,1)
随着sinx的增大而增大
由此可得在函数f(x)的定义域内,sinx的增区间就是f(x)的增区间,sinx的减区间就是f(x)的减区间.
因此,函数的增区间为(-+2kπ,+2kπ),减区间为(+2kπ,+2kπ),其中k∈Z.
分析:(1)根据对数的真数大于0,解关于x的不等式得-1<sinx<1,从而得到函数f(x)的定义域;再由对数函数的值域结合真数的取值范围,即可得到函数f(x)的值域;
(2)根据对数的运算法则和正弦函数奇偶性,利用函数奇偶性定义可得f(x)是奇函数;利用正弦函数的周期,可得f(x)是周期为2π的周期函数;最后用分离常数的方法,结合复合函数单调性判别法则可得函数f(x)的单调区间.
点评:本题给出含有sinx的分式作为真数的对数型函数,求函数的单调性、奇偶性和周期等问题.着重考查了基本初等函数的常见性质、复合函数的单调性法则等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)内为单调增函数,求a的取值范围;
(II) 若函数f(x)在x=O处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=a-
2
2x+1
是定义在R上的奇函数,则f-1(-
3
5
)的值是(  )
A、
3
5
B、-2
C、
1
2
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知f(x)=asin2x+btanx+1,且f(-2)=4,那么f(π+2)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(x2+1)(x+a)
(1)当x∈(0,+∞)时,函数y=f(x)的图象上任意一点的切线斜率恒大于1,求a的取值范围.
(2)若y=f(x)在x∈(0,+∞)上有极值点,求a的取值范围.

查看答案和解析>>

同步练习册答案