精英家教网 > 高中数学 > 题目详情
6.在△ABC中,内角A,B,C所对的边分别为a,b,c.若b=2$\sqrt{2}$,c=1,tanB=2$\sqrt{2}$,则a=(  )
A.2B.3C.2$\sqrt{2}$D.2$\sqrt{3}$

分析 利用同角三角函数的基本关系求得cosB=$\frac{1}{3}$,再利用余弦定理求得a的值.

解答 解:在△ABC中,若b=2$\sqrt{2}$,c=1,tanB=2$\sqrt{2}$,
故$\frac{sinB}{cosB}$=2$\sqrt{2}$,sin2B+cos2B=1,
解得 sinB=$\frac{2\sqrt{2}}{3}$,cosB=$\frac{1}{3}$.
由余弦定理可得b2=8=a2+c2-2ac•cosB=a2+1-$\frac{2a}{3}$,
解得 a=3,或a=-$\frac{7}{3}$(舍去),
故选:B.

点评 本题主要考查同角三角函数的基本关系、余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知f(x)=x2(x∈R),表明的“对应关系”是x的平方,它是R→[0,+∞)的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知实数x,y满足$\left\{\begin{array}{l}{x≥0}\\{y≤x}\\{2x+y-9≤0}\end{array}\right.$,求z=x-y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$\root{3}{\frac{2}{3}}$+2-$\root{3}{(-\frac{2}{3})}$=2($\root{3}{\frac{2}{3}}$+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列叙述不正确的是(  )
A.平面直角坐标系内的任意一条直线都有倾斜角和斜率
B.直线倾斜角的范围是0°≤α<180°
C.若一条直线的倾斜角为α(α≠90°),则此直线的斜率为tanα
D.与坐标轴垂直的直线的倾斜角是0°或90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{1-x}$+lg$\frac{1+x}{1-x}$.
(1)求函数f(x)的定义域,并判断它的单调性(不用证明);
(2)若f(x)的反函数为f-1(x),解方程f-1(x)=$\frac{1}{2}$;
(3)解关于x的不等式:f[x(x+1)]>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:
(1)sinx+sin2x+sin3x+…+sinnx;
(2)cosx+cos2x+cos3x+…+cosnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的实轴长,虚轴长,焦距依次成等差数列,则该双曲线的渐近线方程为y=±$\frac{4}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知tanα,tanβ是方程3x2+5x-7=0的两根,求下列各式的值:
(1)tan(α+β);
(2)$\frac{sin(α+β)}{cos(α-β)}$;
(3)cos2(α+β)

查看答案和解析>>

同步练习册答案