精英家教网 > 高中数学 > 题目详情
18.函数f(x)=$\frac{ax-1}{x+3}$在(-∞,-3)上是减函数,则a的取值范围是(-∞,-$\frac{1}{3}$).

分析 分离常数便可得到f(x)=a-$\frac{3a+1}{x+3}$,根据f(x)为(-∞,-3)上的减函数,从而得到3a+1<0,这样即可得出a的取值范围.

解答 解:$f(x)=\frac{a(x+3)-3a-1}{x+3}$=$a-\frac{3a+1}{x+3}$;
∵f(x)在(-∞,-3)上为减函数;
∴3a+1<0;
∴$a<-\frac{1}{3}$;
∴a的取值范围为(-∞,-$\frac{1}{3}$).
故答案为:(-∞,-$\frac{1}{3}$).

点评 考查分离常数法的运用,反比例函数的单调性,以及图象沿x轴,y轴的平移变换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列结论正确的是(  )
A.若A=R,B=(0,+∞),则f:x→|x|是集合A到集合B的函数
B.若A={x|0≤x≤4},B={y|0≤y≤3},则f:y=$\frac{2}{3}$x是集合A到集合B的映射
C.函数的图象与y轴至少有1个交点
D.若y=f(x)是奇函数,则其图象一定经过原点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,若集合A={x|-1≤x≤5},B={x|y=lg(x-1)},则∁U(A∩B)为(  )
A.{1<x≤5}B.{x≤-1或x>5}C.{x≤1或x>5}D.{1≤x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线x=1,x=2,y=0与曲线y=$\frac{1}{x(x+1)}$围成图形的面积为(  )
A.ln2B.ln$\frac{4}{3}$C.ln3D.ln3-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.f(x)是定义在(-3,3)上的奇函数,且单调递减,若f(2-a)+f(4-3a)<0,则a的取值范围为$({\frac{1}{3},\frac{3}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|log2x<8},B={x|$\frac{x+2}{x-4}$<0},C={x|a<x<a+1}.
(1)求集合A∩B;
(2)若B∪C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$(2,λ),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则实数λ的取值范围是λ>-1且λ≠4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线C的中心在原点,焦点在x轴上,离心率为$\sqrt{2}$,且经过点$(4,-\sqrt{10})$.
(Ⅰ)求双曲线C的方程;
(Ⅱ)求双曲线的顶点坐标,焦点坐标,渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设集合A={x|-4<x<2},B={x|m-1<x<m+1},求分别满足下列条件的m的取值集合:
(1)A∩B=B;
(2)A∩B≠∅

查看答案和解析>>

同步练习册答案