精英家教网 > 高中数学 > 题目详情
(极坐标与参数方程)在同一直角坐标系中,若曲线C:
x=m+2cosα
y=2sinα
(α为参数)与曲线D:
x=2-4t
y=3t-2
(t为参数)没有公共点,则实数m的取值范围是
8
3
,+∞)∪(-∞,-4)
8
3
,+∞)∪(-∞,-4)
分析:把参数方程化为普通方程,判断两曲线分别为圆和直线,由题意可得圆和直线没有公共点,相离,故圆心到直线的距离大于半径,解绝对值不等式求的实数m的取值范围.
解答:解:曲线C:
x=m+2cosα
y=2sinα
(α为参数)即 (x-m)2+y2=4,表示以M(m,0)为圆心,以2为半径的圆.
曲线D:
x=2-4t
y=3t-2
(t为参数)用代入法消去参数t,可得 3x+4y+2=0,表示一条直线.
由题意可得 圆和直线没有公共点,相离,故圆心到直线的距离大于半径,即
|3m+0+2|
9+16
>2,
解得m>
8
3
  或,m<-4,
故答案为 (
8
3
,+∞)∪(-∞,-4).
点评:本题主要考查把参数方程化为普通方程的方法,点到直线的距离公式的应用,直线和圆的位置关系的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选修4-4:极坐标与参数方程)
在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为
x=tcosα
y=1+tsinα
(t为参数,0≤α<π).
(Ⅰ)化曲线C的极坐标方程为直角坐标方程;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(极坐标与参数方程)
已知直线l经过点P(2,1),倾斜角α=
π4

(Ⅰ)写出直线l的参数方程;
(Ⅱ)设直线l与圆O:ρ=2相交于两点A,B,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

(极坐标与参数方程选做题)在极坐标系中,已知A(1,0)B(1,
π
2
)点P在曲线ρcos2θ+4cosθ=ρ上,则|PA|+|PB|最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)(1)选修4-2:矩阵与变换
已知向量
1
-1
在矩阵M=
1m
01
变换下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲线y2-x+y=0在矩阵M-1对应的线性变换作用下得到的曲线方程.
(2)选修4-4:极坐标与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为(4
2
π
4
)
,曲线C的参数方程为
x=1+
2
cosα
y=
2
sinα
(α为参数).
(Ⅰ)求直线OM的直角坐标方程;
(Ⅱ)求点M到曲线C上的点的距离的最小值.
(3)选修4-5:不等式选讲
设实数a,b满足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范围;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)(极坐标与参数方程选做题)
在极坐标系中,点A的坐标为(2
2
π
4
)
,曲线C的方程为ρ=2cosθ,则OA(O为极点)所在直线被曲线C所截弦的长度为
2
2

查看答案和解析>>

同步练习册答案