精英家教网 > 高中数学 > 题目详情

【题目】用6种颜色给右图四面体A﹣BCD的每条棱染色,要求每条棱只染一种颜色且共顶点的棱染不同的颜色,则不同的染色方法共有( )种.

A.4080
B.3360
C.1920
D.720

【答案】A
【解析】解:四面体的对棱可以涂同一种颜色,也可以涂不同的颜色,
①若所有相对的棱涂同一种颜色,则一共用了三种颜色,不同的涂色方案共有 =120种;
②若相对3对对棱中有2对对棱涂同色,则一共用了4种颜色,不同的涂色方案共有 =1080种;
③若相对3对对棱中有1对对棱涂同色,则一共用了5种颜色,不同的涂色方案共有 =2160种;
④若所有的棱的颜色都不相同,则用了6种颜色,不同的涂色方案共有 =720种.
综上可得,总的涂法种数是120+1080+2160+720=4080种,
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为,右焦点为 (1) 求椭圆的标准方程;(2) 若直线经过点且与椭圆有且仅有一个公共点,过点作直线交椭圆于另一点 ①证明:当直线与直线的斜率均存在时,.为定值;②求面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示MNG已知NG=4,当动点M满足条件sin G-sin Nsin M求动点M的轨迹方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)与g(x)和区间D,如果存在x0∈D,使|f(x0)﹣g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“友好点”.现给出两个函数:
①f(x)=x2 , g(x)=2x﹣2;② ,g(x)=x+2;
③f(x)=ex ;④f(x)=lnx,g(x)=x.
则在区间(0,+∞)上存在唯一“友好点”的是 . (填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数a、b、c,有下列命题:①若a>b,则ac<bc;②若ac2>bc2,则a>b;③若a<b<0,则a2>ab>b2;④若c>a>b>0,则;⑤若a>b,,则a>0,b<0.其中正确的是________.(填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线的参数方程为为参数),圆C的参数方程为为参数),以坐标原点O为极点,轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求直线l和圆C的极坐标方程;

(Ⅱ)设直线l和圆C相交于A,B两点,求弦AB与其所对劣弧所围成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 且 是1与an的等差中项.
(1)求数列{an}的通项公式;
(2)设Tn为数列{ }的前n项和,证明: ≤Tn<1(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,⊥底面,点为棱的中点.

(1)(理科生做)证明:

(文科生做)证明:

(2)(理科生做)若为棱上一点,满足,求二面角的余弦值.

(文科生做)求点到平面的距离.

查看答案和解析>>

同步练习册答案