精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=﹣x2+2ex﹣x﹣ +m (x>0),若f(x)=0有两个相异实根,则实数m的取值范围是(
A.(﹣e2+2e,0)
B.(﹣e2+2e,+∞)
C.(0,e2﹣2e)
D.(﹣∞,﹣e2+2e)

【答案】B
【解析】解:函数f(x)=﹣x2+2ex﹣x﹣ +m可化为m=x2﹣2ex+x+ ;m′=
故m=x2﹣2ex+x+ 在(0,e)上是减函数,
在(e,+∞)上是增函数;
若使f(x)=0有两个相异实根,
则m>﹣e2+2e;
故选B.
【考点精析】本题主要考查了函数的零点与方程根的关系的相关知识点,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列选项中,说法正确的个数是( )

①命题“”的否定为“”;

②命题“在中, ,则”的逆否命题为真命题;

③设是公比为的等比数列,则“”是“为递增数列”的充分必要条件;

④若统计数据的方差为,则的方差为

⑤若两个随机变量的线性相关性越强,则相关系数绝对值越接近1.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)求实数a的取值范围以及直线l的方程;
(2)若圆C上存在动点N使CN=2MN成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点M(1,2),且直线l与x轴正半轴和y轴的正半轴交点分别是A、B,(如图,注意直线l与坐标轴的交点都在正半轴上)

(1)若三角形AOB的面积是4,求直线l的方程.
(2)求过点N(0,1)且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:

积极参加班级工作

不积极参加班级工作

合计

学习积极性高

18

7

25

学习积极性不高

6

19

25

合计

24

26

50

(1)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?

(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取2名学生参加某项活动,问2名学生中有1名男生的概率是多少?

(3)学生的学习积极性与对待班级工作的态度是否有关系?请说明理由.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若ABC的三个顶点的坐标分别为A(4,0),B(6,7),C(0,3).
①求BC边上的高所在直线的方程;
②求BC边上的中线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a≠0,集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8≥0},C={x|x2﹣4ax+3a2<0},且C(A∩RB).求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

已知

(1)求的值

(2)已知变量具有线性相关性,求产品销量关于试销单价的线性回归方程 可供选择的数据

(3)用表示(2)中所求的线性回归方程得到的与对应的产品销量的估计值。当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”。试求这6组销售数据中的 “好数据”。

参考数据:线性回归方程中的最小二乘估计分别是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=xlnx﹣a(x﹣1).
(1)求函数f(x)在点(4,f(4))处的切线方程;
(2)若对任意x∈(0,+∞),不等式g(x)≥0恒成立,求实数a的取值的集合M;
(3)当a∈M时,讨论函数h(x)=f(x)﹣g(x)的单调性.

查看答案和解析>>

同步练习册答案