精英家教网 > 高中数学 > 题目详情
某“农家乐”接待中心有客房200间,每间日租金为40元,每天都客满.根据实际需要,该中心需提高租金.如果每间客房日租金每增加4元,客房出租就会减少10间.(不考虑其他因素)
(1)设每间客房日租金提高4x元(x∈N+,x<20),记该中心客房的日租金总收入为y,试用x表示y;
(2)在(1)的条件下,每间客房日租金为多少时,该中心客房的日租金总收入最高?
考点:函数模型的选择与应用
专题:函数的性质及应用
分析:(1)设每间客房日租金提高4x元(x∈N+,x<20),记该中心客房的日租金总收入为y,根据条件即可求出y的表达式;
(2)利用基本不等式或者一元二次函数的性质求最值即可.
解答: 解:(1)若每间客房日租金提高4x元,则将有10x间客房空出,
故该中心客房的日租金总收入为y=(40+4x)(200-10x)=40(10+x)(20-x),(这里x∈N且x<20).
(2)∵y=40(10+x)(20-x)≤40((
10+x+20-x
2
)2
=40×225=9000,
当且仅当10+x=20-x,即x=5时,y的最大值为9000,
即每间客房日租金为40+4×5=60(元)时,该中心客房的日租金总收入最高,其值为9000元.
点评:本题主要考查函数的应用问题,根据条件建立函数关系,利用基本不等式的性质求最值是解决本题的关键.本题也可以使用一元二次函数的最值性质解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若命题p:x∈(A∪B),则¬p是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线与抛物线y2=8x有公共的焦点,且双曲线的离心率为2,则该双曲线的标准方程为(  )
A、x2-
y2
3
=1
B、y2-
x2
3
=1
C、x2-
y2
9
=1
D、y2-
x2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=x+2被圆C:(x-3)2+(y-2)2=r2(r>0)截得的弦AB的长等于该圆的半径.
(1)求圆C的方程;
(2)已知直线m:y=x+n被圆C:(x-3)2+(y-2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知抛物线C的参数方程为
x=8t2
y=8t
(t为参数),若斜率为1的直线l经过抛物线C的焦点,在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C1的极坐标方程为ρ2-8ρcosθ=r2-16,如果直线相切l与曲线C1相切,则r=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

通常候鸟每年秋天从北方飞往南方过冬,若某种候鸟的飞行速度y(m/s)可以表示为函数y=5log2
x
10
,其中x为这种候鸟在飞行过程中耗氧量的单位数.
(1)当这种候鸟的耗氧量是80个单位时,它的飞行速度是多少?
(2)当这种候鸟静止时,它的耗氧量是多少个单位?

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的焦点分别为F1(-1,0)、F2(1,0),抛物线C:y2=-4a2x的准线与x轴的交点为A,且
AF
1=2
AF2

(Ⅰ)求P的值及椭圆C1的方程;
(Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图),求四边形DMEN面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域是R上的函数f(x)满足f(x+2)=2f(x),当x∈(0,2]时,f(x)=
x2-x,x∈(0,1]
-log2x,x∈(1,2]
,若x∈(-4,-2]时,f(x)≤
t
4
-
1
2t
有解,则实数t的取值范围是(  )
A、[-2,0)∪(0,1)
B、[-2,0)∪[1,+∞)
C、[-2,1]
D、(-∞,-2]∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

某三棱锥的三视图如图所示,其正视图和侧视图都是直角三角形,则该三棱锥的体积等于(  )
A、
1
3
B、
2
3
C、1
D、3

查看答案和解析>>

同步练习册答案