精英家教网 > 高中数学 > 题目详情
利用函数f(x)=(
3
5
x+(
4
5
x(x∈R)是减函数可以求方程(
3
5
x+(
4
5
x=1的解.由f(2)=1可知原方程有唯一解x=2,类比上述思路可知不等式x6-(x+2)>(x+2)3-x2的解集是
 
考点:类比推理
专题:计算题,推理和证明
分析:不等式x6-(x+2)>(x+2)3-x2等价为x6+x2>(x+2)3+(x+2).类比(
3
5
x+(
4
5
x=1,求方程的解的解题思路,设f(x)=x3+x,利用导数研究f(x)在R上单调递增,从而根据原方程可得x2>x+2,解之即得x6-(x+2)>(x+2)3-x2的解集.
解答: 解:∵不等式x6-(x+2)>(x+2)3-x2等价为x6+x2>(x+2)3+(x+2).
∴设f(x)=x3+x,
则函数f(x)在R上单调递增,
由x6+x2>(x+2)3+(x+2),
即(x23+x2>(x+2)3+(x+2),
∴x2>x+2,
解得x<-1或x>2.
∴不等式x6-(x+2)>(x+2)3-x2的解集是{x|x<-1或x>2}.
故答案为:{x|x<-1或x>2}.
点评:本题主要考查了类比推理,考查了导数与单调性的关系,函数单调性的应用,考查学生分析问题,解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某计算机程序每运行一次都随机出现一个二进制的4位数N=n1,n2,n3,n4,其中N的各位数字中n1=1,n4是随机(等可能性)地出现0或1,而n2和n3出现0的概率为
3
5
,出现1的概率为
2
5
,记ξ=n1+n2+n3+n4
(1)求ξ=3时的概率;
(2)求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

《中国好声音》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出,每期节目均由四位导师组成,导师背对歌手,当每位参赛选手喝完之前有导师为其转身,则该选手可以选择加入为其转身的老师的团队中接受指导训练,已知某期《中国好声音》中,6位选手演唱完后,四位导师为其转身情况如下表所示:
导师转身人数(人)4321
获得相应导师转身的选手人数(人)1221
现从6位选手中随机抽取两人考察他们演唱完后导师转身情况.
(1)求选出的2人导师为其转身的人数和为4的概率.
(2)记选出的2人导师为其转身的人数之和为x,求x的分布列及数学期望E(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1(侧棱垂直于底面)中,BC⊥AB,且AA1=AB=2.
(1)求证:AB1⊥平面A1BC;
(2)当BC=2时,求直线AC与平面A1BC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>c,求证:
1
(a-b)2
1
(a-c)2

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的流程图,则输出的n为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设T=|2x-1|,若不等式T(x)≥(1+
1
a
)-|2-
1
a
|对任意实数a≠0恒成立,则x的取值范围是(  )
A、(-∞,0]∪[1,+∞)
B、(0,1]
C、(-∞,-1]∪[2,+∞)
D、[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

在一小型轿车销售店有奇瑞E5、比亚迪F3、江淮同悦三种不同型号的小轿车,有甲、乙、丙、丁四位顾客准备到此店各自购买一辆小轿车,假设此四位顾客买每一种型号的小轿车的概率均为
1
3

(Ⅰ)求其中甲、乙两位顾客购买同一种型号小轿车的概率;
(Ⅱ)设这4名顾客购买比亚迪F3的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,3cos(B-C)-1=6cosBcosC
(1)求cosA
(2)若a=3,S△ABC=2
2
,求b,c.

查看答案和解析>>

同步练习册答案