精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的函数满足,且的导函数,则不等式的解集为( )

A. B. C. D.

【答案】C

【解析】分析:根据题意,设g(x)=f(x)﹣2x2+x﹣1,由题设可知g′(x)<0,即函数g(x)在R上为减函数,则原不等式可以转化为g(x)g(3),结合函数的单调性分析可得答案.

详解:根据题意,设g(x)=f(x)﹣2x2+x﹣1,其导数g′(x)=f′(x)﹣4x+1,

又由f'(x)4x﹣1,即f′(x)﹣4x+1<0,

则g′(x)0,即函数g(x)在R上为减函数,

又由f(3)=16,则g(3)=f(3)﹣18+3﹣1=0,

f(x)<2x2﹣x+1f(x)﹣2x2+x﹣1<0g(x)<g(3),

又由函数g(x)为减函数,则有x>3,

则不等式f(x)<2x2﹣x+1的解集为{x|x>3};

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.

1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;

2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?

3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望.

附:

0.10

0.05

0.025

0.010

0.005

k

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:

土地使用面积(单位:亩)

1

2

3

4

5

管理时间(单位:月)

8

10

13

25

24

并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:

愿意参与管理

不愿意参与管理

男性村民

150

50

女性村民

50

1)求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?

2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?

3)若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望。

参考公式:

其中。临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,是菱形,平面.

1)求证:平面平面

2)求平面与平面构成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1772年德国的天文学家波得发现了求太阳的行星距离的法则,记地球距离太阳的平均距离为10,可以算得当时已知的六大行星距离太阳的平均距离如下表:

星名

水星

金星

地球

火星

木星

土星

与太阳的距离

4

7

10

16

52

100

除水星外,其余各星与太阳的距离都满足波得定则(某一数列规律),当时德国数学家高斯根据此定则推算,火星和木星之间距离太阳28还有一颗大行星,1801年,意大利天文学家皮亚齐经过观测,果然找到了火星和木星之间距离太阳28的谷神星以及它所在的小行星带,请你根据这个定则,估算从水星开始由近到远算,第10个行星与太阳的平均距离大约是(

A.388B.772C.1540D.3076

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)若二项式的展开式中存在常数项,则的最小值为______

2)从6名志愿者中选出4人,分别参加两项公益活动,每项活动至少1人,则不同安排方案的种数为____.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为4的正方体中,点M是正方体表面上一动点,则下列说法正确的个数为(

①若点M在平面ABCD内运动时总满足,则点M在平面ABCD内的轨迹是圆的一部分;

②在平面ABCD内作边长为1的小正方形EFGA,点M满足在平面ABCD内运动,且到平面的距离等于到点F的距离,则M在平面ABCD内的轨迹是抛物线的一部分;

③已知点N是棱CD的中点,若点M在平面ABCD内运动,且平面,则点M在平面内的轨迹是线段;

④已知点PQ分别是的中点,点M为正方体表面上一点,若MPCQ垂直,则点M所构成的轨迹的周长为.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

同步练习册答案