精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C:(a>b>0)的离心率为,以坐标原点O为圆心,椭圆C的短半轴长为半径的圆与直线x+y+=0相切.A,B分别是椭圆C的左、右顶点,直线lB点且与x轴垂直.

(1)求椭圆C的标准方程;

(2)设G是椭圆C上异于A,B的任意一点,过点GGH⊥x轴于点H,延长HG到点Q使得|HG|=|GQ|,连接AQ并延长交直线l于点M,N为线段MB的中点,判断直线QN与以AB为直径的圆O的位置关系,并证明你的结论.

【答案】(1);(2)见解析

【解析】

(1)由题意可得,再由椭圆的离心率求解的值,即可得到椭圆的标准方程;

(2)设,则,可得的方程,又由点在椭圆上,代入化简得,又由原点到直线QN的距离,即可作差判断.

(1)由题意可得b==1.

又∵椭圆C的离心率e==,a2=b2+c2,∴a2=4,

∴椭圆C的标准方程为+y2=1.

(2)设G(x0,y0),则Q(x0,2y0).

易知A(-2,0),B(2,0),可得直线AQ的方程为y=(x+2),

令x=2,可得M,∴N,

则直线QN的方程为y-2y0=(x-x0),

即2x0y0x-(-4)y-8y0=0①.

又∵点G在椭圆C上,

+=1,∴①式可化为x0x+2y0y-4=0,

∴原点(0,0)到直线QN的距离为=2.

又易知以AB为直径的圆O的半径为2,

故直线QN与以AB为直径的圆O相切.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣12x+b,则下列结论正确的是(
A.函数f(x)在(﹣∞,﹣1)上单调递增
B.函数f(x)在(﹣∞,﹣1)上单调递减
C.若b=﹣6,则函数f(x)的图象在点(﹣2,f(﹣2))处的切线方程为y=10
D.若b=0,则函数f(x)的图象与直线y=10只有一个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x∈R,y∈R,若复数(x2+y2-4)+(x-y)i是纯虚数,则点(x,y)的轨迹是(  )

A. 以原点为圆心,以2为半径的圆

B. 两个点,其坐标为(2,2),(-2,-2)

C. 以原点为圆心,以2为半径的圆和过原点的一条直线

D. 以原点为圆心,以2为半径的圆,并且除去两点(),(-,-)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)当n≥6时,求证: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为k的直线l经过点(-1,0),且与抛物线C:y2=2px(p>0,p为常数)交于不同的两点M,N.k=时,弦MN的长为.

(1)求抛物线C的标准方程.

(2)过点M的直线交抛物线于另一点Q,且直线MQ经过点B(1,-1),判断直线NQ是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xex﹣asinxcosx(a∈R,其中e是自然对数的底数).
(1)当a=0时,求f(x)的极值;
(2)若对于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范围;
(3)是否存在实数a,使得函数f(x)在区间 上有两个零点?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如图所示.

规定:当产品中此种元素的含量大于18毫克时,认定该产品为优等品.

(1)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;

(2)从乙厂抽出的上述10件产品中随机抽取3件,求抽到的3件产品中优等品数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为 (α为参数)以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为 .若直线l与曲线C交于A,B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)设,若不等式对任意恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案