A. | 45° | B. | 60° | C. | 90° | D. | 120° |
分析 如图所示,由题意可建立空间直角坐标系.利用$cos<\overrightarrow{EF},\overrightarrow{GH}>$=$\frac{\overrightarrow{EF}•\overrightarrow{GH}}{|\overrightarrow{EF}||\overrightarrow{GH}|}$即可得出.
解答 解:如图所示,由题意可建立空间直角坐标系.
不妨时AB=2,则B(0,0,0),C(2,0,0),G(1,0,0),A(0,2,0),E(0,1,0),C1(2,0,2),H(2,0,1),B1(0,0,2),F(0,0,1).
$\overrightarrow{EF}$=(0,-1,1),$\overrightarrow{GH}$=(1,0,1).
∴$cos<\overrightarrow{EF},\overrightarrow{GH}>$=$\frac{\overrightarrow{EF}•\overrightarrow{GH}}{|\overrightarrow{EF}||\overrightarrow{GH}|}$=$\frac{1}{\sqrt{2}×\sqrt{2}}$=$\frac{1}{2}$,
∴异面直线EF和GH所成的角是60°.
故选:B.
点评 本题考查了直三棱柱的性质、向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{4}$+$\frac{1}{4}$i | D. | $\frac{\sqrt{3}}{4}$-$\frac{1}{4}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}+1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com