精英家教网 > 高中数学 > 题目详情
12.设角α的终边经过点P(sin2,cos2),则$\sqrt{2(1-sinα)}$的值等于(  )
A.sin1B.cos1C.2sin1D.2cos1

分析 点P在单位圆上,故sinα=cos2,利用二倍角公式可得结论.

解答 解:点P在单位圆上,故sinα=cos2,
∴$\sqrt{2(1-sinα)}$=$\sqrt{2si{n}^{2}1}$=2sin1.
故选C.

点评 本题考查三角函数的定义,考查二倍角公式的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点$P({1,\frac{3}{2}})$,离心率e=$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)不过原点的直线l与椭圆C交于A,B两点,若AB的中点M在抛物线E:y2=4x上,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若i是虚数单位,
(1)已知复数Z=$\frac{5{m}^{2}}{1-2i}$-(1+5i)m-3(2+i)是纯虚数,求实数m的值.
(2)如不等式m2-(m2-3m)i<(m2-4m+3)i+10成立,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若函数y=f(x+m)在[-1,1]上单调,求m的取值范围;
(3)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=ln x-$\frac{1}{2}$ax2-x,若x=1是f(x)的极值点,则a的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)和圆O:x2+y2=a2,F1(-1,0),F2(1,0)分别是椭圆的左、右两焦点,过F1且倾斜角为α$({α∈({0,\frac{π}{2}}]})$的动直线l交椭圆C于A,B两点,交圆O于P,Q两点(如图所示,点A在x轴上方).当α=$\frac{π}{4}$时,弦PQ的长为$\sqrt{14}$. 
(1)求圆O与椭圆C的方程;
(2)若2|BF2|=|AF2|+|AB|,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)计算:($\root{3}{3}$×$\sqrt{2}$)6+($\sqrt{3\sqrt{3}}$)${\;}^{\frac{4}{3}}$-$\root{4}{2}$×80.25-(-2019)0
(2)已知0<x<1,且x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}的前n项和为Sn,且S4=6,2a3-a2=6,则a1等于(  )
A.-3B.-2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}满足an=3an-1+2(n≥2,n∈N*),且a1=2,bn=log3(an+1).
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Sn

查看答案和解析>>

同步练习册答案