分析 (1)根据A=B,得到1,2就是x2+ax+2=0的两根,根据根与系数的关系即可求出,
(2)由A⊆B知 B={x|x2+ax+2≤0} 的两根,一根大于或等于2,一根小于或等于1,只需满足$\left\{\begin{array}{l}{f(1)≤0}\\{f(2)≤0}\end{array}\right.$,解得即可.
解答 解:(1)集合A={x|1≤x≤2},B={x|x2+ax+2≤0},A=B
∴1+2=-a,
∴a=-3,
(2)由A⊆B知 B={x|x2+ax+2≤0} 的两根,一根大于或等于2,一根小于或等于1,
令f(x)=x2+ax+2,
只需满足$\left\{\begin{array}{l}{f(1)≤0}\\{f(2)≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{1+a+2≤0}\\{4+2a+2≤0}\end{array}\right.$
解得a≤-3,
故a的取值范围(-∞,-3].
点评 本题主要考查集合的基本运算以及集合关系的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-$\frac{1}{2}$,1) | B. | (1,+∞) | C. | (-∞,1)∪(2,+∞) | D. | (-∞,-$\frac{1}{2}$)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com