【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点和上的点,满足
(1)当在圆上运动时,求点的轨迹方程;
(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.
科目:高中数学 来源: 题型:
【题目】近年来,某市实验中学校领导审时度势,深化教育教学改革,经过师生共同努力,高考成绩硕果累累,捷报频传,尤其是2017年某著名高校在全国范围内录取的大学生中就有25名来自该中学.下表为该中学近5年被录取到该著名高校的学生人数.(记2013年的年份序号为1,2014年的年份序号为2,依此类推……)
年份序号 | 1 | 2 | 3 | 4 | 5 |
录取人数 | 10 | 13 | 17 | 20 | 25 |
(1)求关于的线性回归方程,并估计2018年该中学被该著名高校录取的学生人数(精确到整数);
(2)若在第1年和第4年录取的大学生中按分层抽样法抽取6人,再从这6人中任选2人,求这2人中恰好有一位来自第1年的概率.
参考数据:,.
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1所示,在中, , , , 为的平分线,点在线段上, .如图2所示,将沿折起,使得平面平面,连结,设点是的中点.
图1 图2
(1)求证: 平面;
(2)在图2中,若平面,其中为直线与平面的交点,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的上顶点到右顶点的距离为,左焦点为,过点且斜率为的直线交椭圆于, 两点.
(Ⅰ)求椭圆的标准方程及的取值范围;
(Ⅱ)在轴上是否存在定点,使恒为定值?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C: ,点在x轴的正半轴上,过点M的直线与抛物线C相交于A,B两点,O为坐标原点.
(1)若,且直线的斜率为1,求以AB为直径的圆的方程;
(2)是否存在定点M,使得不论直线绕点M如何转动, 恒为定值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,且,设命题p:函数在上单调递减;命题q:函数 在上为增函数,
(1)若“p且q”为真,求实数c的取值范围
(2)若“p且q”为假,“p或q”为真,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:对任意,不等式恒成立;命题q:存在,使得成立.
(1)若p为真命题,求m的取值范围;
(2)当,若p且q为假,p或q为真,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com