精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

时,求函数处的切线方程;

时,求函数的单调区间;

若函数有两个极值点,不等式恒成立,求实数的取值范围.

【答案】时,的单调递增区间是时,的单调递增区间是单调递减区间是.

【解析】

试题分析:先对函数求导,求出切线方程得斜率,再求出该点的函数值,利用点斜式求解;利用导函数的正负判断原函数的单调性,再分类讨论函数上有两个极值点,表示,得到新的函数,再求最值.

试题解析:I时,

所以切线方程为

即为

时,,函数上单调递增;

2,即时,由,得

,得

,得.

综上,当时,的单调递增区间是

时,的单调递增区间是

单调递减区间是

函数上有两个极值点,由可得

,,

,可得

,则

,则,即递减,

即有

即有实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为

(1)若为等边三角形,求椭圆的方程;

(2)若椭圆的短轴为2,过点的直线与椭圆相交于两点,且求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABC﹣A1B1C1是底面边长为2,高为的正三棱柱,经过AB的截面与上底面相交于PQ,设C1P=λC1A1(0<λ<1).

(Ⅰ)证明:PQ∥A1B1

(Ⅱ)当时,在图中作出点C在平面ABQP内的正投影F(说明作法及理由),并求四面体CABF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据)如下表所示:

试销价格

(元)

4

5

6

7

9

产品销量

(件)

84

83

80

75

68

已知变量具有线性负相关关系,且,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲,乙,丙,其中有且仅有一位同学的计算结果是正确的( ).

1)试判断谁的计算结果正确?并求出的值;

2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是理想数据,现从检测数据中随机抽取2个,理想数据的个数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知两定点,⊙C的方程为.当⊙C的半径取最小值时:

(1)求出此时m的值,并写出⊙C的标准方程;

(2)在x轴上是否存在异于点E的另外一个点F,使得对于⊙C上任意一点P,总有为定值?若存在,求出点F的坐标,若不存在,请说明你的理由;

(3)在第(2)问的条件下,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一圆经过点,且它的圆心在直线.

I求此圆的方程

II若点为所求圆上任意一点,且点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体,则下列说法不正确的是(

A.若点在直线上运动时,三棱锥的体积不变

B.若点是平面上到点距离相等的点,则点的轨迹是过点的直线

C.若点在直线上运动时,直线与平面所成角的大小不变

D.若点在直线上运动时,二面角的大小不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场没销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.

)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量(单位:台,)的函数解析式

)该商场记录了去年夏天(共10周)空调器需求量(单位:台),整理得下表:

10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,表示当周的利润(单位:元),求的分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价元和销售量杯之间的一组数据如下表所示:

价格

5

5.5

6.5

7

销售量

12

10

6

4

通过分析,发现销售量对奶茶的价格具有线性相关关系.

(Ⅰ)求销售量对奶茶的价格的回归直线方程;

(Ⅱ)欲使销售量为杯,则价格应定为多少?

附:线性回归方程为,其中

查看答案和解析>>

同步练习册答案