精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和为Sn,若S9=72,求a2+a4+a9的值是(  )
分析:应用等差数列的性质:数列{an}是等差数列,若正整数p,q,m,n满足p+q=m+n,则ap+aq=am+an,即可计算出答案.
解答:解:∵数列{an}是等差数列,且S9=72,
9(a1+a9)
2
=72
,∴a1+a9=16.
由等差数列的性质可知:a2+a9=a5+a6,a1+a9=2a5=16,∴a5=8.
∴a2+a4+a9=a5+a6+a4=3a5=3×8=24.
故选A.
点评:此题考查等差数列的计算,熟练应用公式和性质计算是解决此问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案