精英家教网 > 高中数学 > 题目详情
(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.
(1).(2) 144

试题分析:

(1)解法 一:连结,可证,直线所成角等于直线所成角.因为垂直于底面,所以,点分别是的中点, ,在中,,,
, 
即异面直线所成角的大小为
解法二:以为坐标原点建立空间直角坐标系可得 
直线所成角为,向量的夹角为
 

即异面直线所成角的大小为
(说明:两种方法难度相当)
(2) 因为垂直于底面,所以
,同理…………8分
底面四边形是边长为6的正方形,所以


所以四棱锥的表面积是144
点评:高考中的立体几何问题主要是探求和证明空间几何体中的平行和垂直关系以及空间角、体积等计算问题.对于平行和垂直问题的证明或探求,其关键是把线线、线面、面面之间的关系进行灵活的转化.在寻找解题思路时,不妨采用分析法,从要求证的结论逐步逆推到已知条件
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知ABCD是矩形,AD=2AB,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(Ⅰ)求证:DF⊥平面PAF;
(Ⅱ)在棱PA上找一点G,使EG∥平面PFD,当PA=AB=4时,求四面体E-GFD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)如图1,在三棱锥PABC中,平面ABCD为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。

(1)证明:平面PBC
(2)求三棱锥DABC的体积;
(3)在的平分线上确定一点Q,使得平面ABD,并求此时PQ的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直二面角α? ι?β,点A∈α,AC⊥ι,C为垂足,B∈β,BD⊥ι,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且

(1)求三棱锥DABC的表面积;
(2)求证AC⊥平面DEF
(3)若MBD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知如图(1),正三角形ABC的边长为2a,CDAB边上的高,EF分别是ACBC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).

(Ⅰ) 求二面角B-AC-D的大小;
(Ⅱ) 若异面直线ABDE所成角的余弦值为,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l与球O有且只有一个公共点P,从直线l出发的两个半平面截球O的两个截面圆的半径分别为1和.若二面角的平面角为150°,则球O的表面积为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正四棱锥的所有棱长相等,EPC的中点,则异面直线BEPA所成角的余弦值是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

查看答案和解析>>

同步练习册答案