分析 (1)由已知及余弦定理可求cosA=$\frac{1}{2}$,结合范围A∈(0,π),可求A的值.
(2)利用三角函数恒等变换的应用化简2sin2$\frac{B}{2}$=cosC,可得sin(B+$\frac{π}{6}$)=1,结合范围B∈(0,π),可求
∴B=C=$\frac{π}{3}$,即可判断三角形的形状.
解答 (本小题满分12分)
解:(1)在△ABC中,由余弦定理得b2+c2-a2=2bccosA,又b2+c2=a2+bc,
∴cosA=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$. …(5分)
(2)∵2sin2$\frac{B}{2}$=cosC,
∴cosB+cosC=1,…(7分)
∴cosB+cos($\frac{2π}{3}$-B)=1,可得:cosB+cos$\frac{2π}{3}$cosB+sin$\frac{2π}{3}$sinB=1,…(9分)
∴$\frac{\sqrt{3}}{2}$sinB+$\frac{1}{2}$cosB=1,可得:sin(B+$\frac{π}{6}$)=1,
∵B∈(0,π),
∴B=$\frac{π}{3}$,C=$\frac{π}{3}$,…(11分)
∴△ABC是等边三角形.…(12分)
点评 本题主要考查了余弦定理,三角函数恒等变换的应用,正弦函数的形状,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | (-∞,2] | B. | [-1,+∞) | C. | (-1,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [9,+∞) | B. | (-∞,9] | C. | (9,+∞) | D. | (-∞,9) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{17}{6}$升 | B. | $\frac{7}{2}$升 | C. | $\frac{113}{66}$升 | D. | $\frac{109}{33}$升 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $2+\frac{{\sqrt{15}}}{5}$ | C. | $4+\frac{{\sqrt{15}}}{5}$ | D. | $2\sqrt{2}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6里 | B. | 12里 | C. | 24里 | D. | 36里 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com