精英家教网 > 高中数学 > 题目详情
3.已知$sin(α-\frac{π}{8})=\frac{3}{5},\frac{5π}{8}<α<\frac{9π}{8}$,
(1)求 $cos({α-\frac{π}{8}})$的值; 
 (2)求sin2α-cos2α的值.

分析 (1)先确定$α-\frac{π}{8}$的范围,再由同角三角函数关系式求$cos({α-\frac{π}{8}})$的值.
(2)利用倍角公式、三角函数恒等式求解.

解答 解:(1)∵$sin(α-\frac{π}{8})=\frac{3}{5},\frac{5π}{8}<α<\frac{9π}{8}$,
∴$\frac{π}{2}<α-\frac{π}{8}<π$,
∴$cos(α-\frac{π}{8})=-\frac{4}{5}$.
(2)sin2α-cos2α
=$\sqrt{2}sin(2α-\frac{π}{4})$
=2$\sqrt{2}$sin($α-\frac{π}{8}$)cos($α-\frac{π}{8}$)
=2$\sqrt{2}×\frac{3}{5}×(-\frac{4}{5})$
=-$\frac{24\sqrt{2}}{25}$.

点评 本题考查三角函数值的求法,是中档题,解题时要认真审题,注意同角三角函数关系式和倍角公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e为自然对数的底数.
(1)若函数f(x)在点(1,f(1))处的切线方程是y=(e-1)x-1,求实数a及b的值;
(2)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(3)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=log3(x2-2ax+5)在区间(-∞,1]内是减函数,则实数a的取值范围[1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列命题:①直线$x+\sqrt{3}y-1=0$的倾斜角是$\frac{2π}{3}$;②已知过抛物线C:y2=2px(p>0)的焦点F的直线与抛物线C交于A(x1,y1),B(x2,y2)两点,则有${x_1}{x_2}=\frac{p^2}{4},{y_1}{y_2}=-{p^2}$;③已知F1、F2为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左、右焦点,点P为双曲线右支上异于顶点的任意一点,则△PF1F2的内心I始终在一条直线上.
其中所有正确命题的序号为②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lg$\frac{1-x}{1+x}$,若f(a)=b,求f(-a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设等比数列{an}的前n项和为Sn,已知a1=2016,且an+2an+1+an+2=0(n∈N*),则S2016=(  )
A.0B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1、F2是双曲线的两焦点,过F2且垂直于实轴的直线交双曲线于P、Q两点,∠PF1Q=60°,则离心率e=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是{x|x<-3或0<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={lna},B={x∈Z|x2<2x},若A∪B=A,则a=(  )
A.1B.eC.e2D.$\sqrt{e}$

查看答案和解析>>

同步练习册答案