精英家教网 > 高中数学 > 题目详情
已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(1)若直线l过点P且被圆C截得的弦长为4
2
,求直线l的方程;
(2)设过点P的直线l1与圆C交于M、N两点,当P恰为MN的中点时,求以线段MN为直径的圆Q的方程.
分析:(1)利用直线l的斜率存在与不存在两种情况,通过圆心到直线的距离,半弦长,半径满足勾股定理,即可求直线l的方程;
(2)求出CP,通过弦心距、半径、半弦长的关系,求出弦长就是直径,即可求以线段MN为直径的圆Q的方程.
解答:解:(1)设直线l的斜率为k(k存在),
则方程为y-0=k(x-2).即kx-y-2k=0
又圆C的圆心为(3,-2),半径r=3,
由题意知
|3k+2-2k|
k2+1
=
32-(2
2
)2
=1
,解得k=-
3
4
.…(3分)
所以直线方程为y=-
3
4
(x-2)

即 3x+4y-6=0.…(4分)
当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件.…(6分)
所以直线l的方程为x=2或3x+4y-6=0…(7分)
(2)由于|CP|=
5
,…(8分)  
所以弦心距d=
r2-(
|MN|
2
)
2
=
5
,则|MN|=4…(10分)
故以MN为直径的圆Q的方程为(x-2)2+y2=4.…(12分)
点评:本题考查直线与圆的位置关系,直线与圆相切,相交,直线的交点,弦的中点,三角形的面积的最值直线方程等有关知识,考查计算能力,转化思想,注意直线的斜率不存在的情况,容易疏忽,是易错点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;
(Ⅲ)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(1)若圆C与圆x2+y2+2x-2y+m=0外切,求m的值;
(2)设过点P的直线l1与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,0)及⊙C:x2+y2-6x+4y+4=0.

(1)当直线l过点P且与圆心C的距离为1时,求直线l的方程;

(2)设过点P的直线与⊙C交A、B两点,当|AB|=4时,求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年天津市汉沽区高二(上)期中数学试卷(必修2)(解析版) 题型:解答题

已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;
(Ⅲ)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案