精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+$\frac{1}{4}$b2x(a,b∈R),若|a-1|+|b-1|≤1,求f′(x)在R上有零点的概率(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

分析 首先由题意正确求出使f′(x)在R上有零点的a,b的范围,然后化成可行域,利用面积的关系其概率.

解答 解:由题意,f'(x)=($\frac{1}{3}$x3+$\frac{1}{2}$ax2+$\frac{1}{4}$b2x)'=x2+ax+$\frac{1}{4}{b}^{2}$,要使f′(x)在R上有零点则△=a2-b2≥0,即|a|≥|b|,所以0≤b≤|a|或-|a|≤b<0,
而|a-1|+|b-1|≤1,对应的区域如图,
由几何概型的概率公式可得f′(x)在R上有零点的概率为$\frac{1}{2}$;
故选:A.

点评 本题主要考查了几何概型,本题先要判断该概率模型,对于几何概型,它的结果要通过长度、面积或体积之比来得到,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}|lgx|,0<x≤3\\ f(6-x),3<x<6\end{array}\right.$,设方程f(x)=2-x+b(b∈R)的四个不等实根从小到大依次为x1,x2,x3,x4,对于满足条件的任意一组实根,下列判断中正确的个数为(  )
①0<x1x2<1    ②(6-x3)(6-x4)>1   ③9<x3x4<25  ④25<x3x4<36.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=x5+x,若a+b>0,b+c>0,c+a>0,则f(a)+f(b)+f(c)0(填<、=、>、≤).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}中a7+a9=16,a4=12,则a12=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合M={0,x},N={1,2},若M∩N={1},则M∪N={0,1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等腰直角三角形ABC中,∠ACB=90°,在∠ACB内部任意作一条射线CM,与线段AB交于点M,则AM<AC的概率(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)若$\overrightarrow{a}$=(-3,4),$\overrightarrow{b}$=(2,-1),且($\overrightarrow{a}$-x$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),求x的值;
(2)向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),当k为何值时,A,B,C三点共线?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知f(2x+1)=$\frac{4x+1}{2x-1}$,求f(x)表达式和值域;
(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)的定义域为D={x|x≠0},且满足对于任意x,y∈D有f(xy)=f(x)+f(y).
(1)求f(1)和f(-1)的值;
(2)判断f(x)的奇偶性并说明理由;
(3)如果f(4)=1,f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.

查看答案和解析>>

同步练习册答案