精英家教网 > 高中数学 > 题目详情
从1,2,3,4,5五个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有
 
个.(用数字作答)
考点:计数原理的应用
专题:排列组合
分析:根据先选再排的原则,选出一个偶数和两个奇数,再进行全排列,问题得以解决
解答: 解:由题意,选出一个偶数和两个奇数有
C
1
2
C
2
3
=6种,
再进行全排列,这样的三位数共有6•
A
3
3
=36.
故答案为:36.
点评:本题考查排列、组合及简单计数问题,解题的关键是正确理解偶的含义,以及计数原理,且能根据问题的要求进行分类讨论,本题考查了推理判断的能力及运算能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=cos2x+asinx在区间(
π
6
π
2
)是减函数,则a的取值范围是(  )
A、(2,4)
B、(-∞,2]
C、(-∞,4]
D、[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
•(
b
+
c
),其中向量
a
=(sinx,-cosx),
b
=(sinx,-3cosx),
c
=(-cosx,sinx),x∈R.
(1)求函数f(x)的单调减区间;
(2)函数y=f(x)的图象可由函数y=sinx的图象经过怎样变化得出?
(3)若不等式|f(x)-m|<2在x∈[
π
8
π
2
]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sina,cosa是关于x的方程8x2+6mx+2m+1=0的两根,求
1
sina
+
1
cosa
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=-2tan(3x+
π
3
)的定义域、值域,并指出它的周期、奇偶性和单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

一元二次不等式x2-2x<0的解集为(  )
A、(0,2)
B、(-∞,0)
C、(-∞,0)∪(2,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足x-y+1=0(-1≤x≤4),则(x-3)2+y2的取值范围是
 
y-2
x
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知a-b=2,c=4,sinA=2sinB.
(1)求△ABC的面积;
(2)求sin(A-B).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2(x+
π
12
),g(x)=1+
1
2
sin2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(2x0)的值;
(2)求函数h(x)=f(x)+g(x),x∈[0,
π
4
]的值域.

查看答案和解析>>

同步练习册答案