【题目】已知三棱锥P﹣ABC的所有棱长为1.M是底面△ABC内部一个动点(包括边界),且M到三个侧面PAB,PBC,PAC的距离h1,h2,h3成单调递增的等差数列,记PM与AB,BC,AC所成的角分别为α,β,γ,则下列正确的是( )
A.α=βB.β=γC.α<βD.β<γ
【答案】D
【解析】
PM与AB,BC,AC所成的角分别为α,β,γ,即比较OM与AB,BC,AC夹角的大小,然后在△ABC中解决问题, 由于d1<d2<d3,可知M在如图阴影区域(不包括边界)
从图中可以看出,OM与BC所成角小于OM与AC所成角,即得解.
依题意知正四面体P﹣ABC的顶点P在底面ABC的射影是正三角形ABC的中心O,
由余弦定理可知,
cosα=cos∠PMOcos<MO,AB>,其中<MO,AB>表示直线MO与AB的夹角,
同理可以将β,γ转化,
cosβ=cos∠PMOcos<MO,BC>,其中<MO,BC>表示直线MO与BC的夹角,
cosγ=cos∠PMOcos<MO,AC>,其中<MO,AC>表示直线MO与AC的夹角,
由于∠PMO是公共的,因此题意即比较OM与AB,BC,AC夹角的大小,
设M到AB,BC,AC的距离为d1,d2,d3 则d1=sin,其中θ是正四面体相邻两个面所成角,sinθ,
所以d1,d2,d3成单调递增的等差数列,然后在△ABC中解决问题
由于d1<d2<d3,可知M在如图阴影区域(不包括边界)
从图中可以看出,OM与BC所成角小于OM与AC所成角,所以β<γ,
故选:D.
科目:高中数学 来源: 题型:
【题目】牛顿迭代法(Newton's method)又称牛顿–拉夫逊方法(Newton–Raphsonmethod),是牛顿在17世纪提出的一种近似求方程根的方法.如图,设是的根,选取作为初始近似值,过点作曲线的切线与轴的交点的横坐标,称是的一次近似值,过点作曲线的切线,则该切线与轴的交点的横坐标为,称是的二次近似值.重复以上过程,直到的近似值足够小,即把作为的近似解.设构成数列.对于下列结论:
①;
②;
③;
④.
其中正确结论的序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于, 两点.若直线斜率为 时, .
(1)求椭圆的标准方程;
(2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1.这个题目在东方被称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明.例如取,则要想算出结果1,共需要经过的运算步数是( )
A.9B.10C.11D.12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn,且=9,S6=60.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn+1﹣bn=(n∈N+)且b1=3,求数列的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,过点的动圆恒与轴相切,为该圆的直径,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的任意直线与曲线交于点,为的中点,过点作轴的平行线交曲线于点,关于点的对称点为,除以外,直线与是否有其它公共点?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com