精英家教网 > 高中数学 > 题目详情
1.已知i是虚数单位,复数z=(3+i)(1-i)对应的点在第(  )象限.
A.B.C.D.

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数z=(3+i)(1-i)=4-2i对应的点(4,-2)在第四象限.
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.有下列命题:
①已知$\overrightarrow{a}$,$\overrightarrow{b}$是平面内两个非零向量,则平面内任一向量$\overrightarrow{c}$都可表示为λ$\overrightarrow{a}$+μ$\overrightarrow{b}$,其中λ,μ∈R;
②对任意平面四边形ABCD,点E、F分别为AB、CD的中点,则$2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}$;
③直线x-y-2=0的一个方向向量为(1,-1);
④在△ABC中,AB=2,AC=3,$\overrightarrow{AB}•\overrightarrow{BC}=1$则BC=$\sqrt{3}$;
其中正确的是②④(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[-2,0]时,f(x)=x2+2x,若x∈[2,4]时,$f(x)≥2log_2^{(t+1)}$恒成立,则实数t的取值范围是(-1,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+bx2+4x的极小值为-8,其导函数y=f'(x)的图象经过点(-2,0),如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数y=f(x)在区间[-3,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列{an}满足a1=3,a2=6,an+2=an+1-an(n∈N*),则a1000=(  )
A.3B.6C.-3D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设z=x+y,其中x,y满足$\left\{\begin{array}{l}x+2y≥0\\ 2x-y≤0\\ 0≤y≤m\end{array}\right.$,若z的最大值为12,则z的最小值为(  )
A.-8B.-6C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若P=$\sqrt{a}$+$\sqrt{a+5}$,Q=$\sqrt{a+2}$+$\sqrt{a+3}$(a≥0),则P,Q的大小关系是(  )
A.P>QB.P=QC.P<QD.由a的取值确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了判断高中生的文理科选修是否与性别有关,随机调查了50名学生,得到如下2×2列联表:
 理科文科
1410
620
(1)画出列联表的等高条形图,并通过图形判断文理科选修与性别是否有关?
(2)利用列联表的独立性检验,能否在犯错误的概率不超过0.05的前提下认为选修文理科与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设抛物线y2=2x与过其焦点的直线交于A,B两点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$的值为(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-3D.3

查看答案和解析>>

同步练习册答案