精英家教网 > 高中数学 > 题目详情
5.对于两个平面α,β和两条直线m,n,下列命题中真命题是(  )
A.若m⊥α,m⊥n,则n∥αB.若m∥α,α⊥β,则m⊥β
C.若m∥α,n∥β,α⊥β,则m⊥nD.若m⊥α,n⊥β,α⊥β,则m⊥n

分析 在A中:n∥α或n?α;在B中,m与β相交、平行或l?β;在C中,m与n相交、平行或异面;在D中,由线面垂直和面面垂直的性质得m⊥n.

解答 解:在A中:若m⊥α,m⊥n,则n∥α或n?α,故A错误;
在B中:若m∥α,α⊥β,则m与β相交、平行或l?β,故B错误;
在C中:若m∥α,n∥β,α⊥β,则m与n相交、平行或异面,故C错误;
在D中:若m⊥α,n⊥β,α⊥β,则由线面垂直和面面垂直的性质得m⊥n,故D正确.
故选:D.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.点P( 1,4,-3)与点Q(3,-2,5)的中点坐标是(  )
A.( 4,2,2)B.(2,-1,2)C.(2,1,1)D.( 4,-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C经过A(1,1),B(0,2)两点,并且圆心C在直线2x-y=0上.
(1)求该圆的方程
(2)求该圆过点(2,4)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x),对任意的x∈[0,+∞),恒有f(x+2)=f(x)成立,且当x∈[0,2)时,f(x)=2-x.则方程$f(x)=\frac{1}{n}x$在区间[0,2n)(其中n∈N*)上所有根的和为n2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.学校有两个食堂,现有3名学生前往就餐,则三个人不在同一个食堂就餐的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=sin(ωx+φ)(其中ω>0)在(0,$\frac{π}{3}$)上单调递增,且f($\frac{π}{6}$)+f($\frac{π}{3}$)=0,f(0)=-1,则ω=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=lnx+x-$\frac{m}{x}$+1.
(1)当m=0时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)讨论y=f(x)的单调性;
(3)当m=-2时,求y=f(x)在[$\frac{1}{e}$,e]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求圆心在直线4x+y=0上,且与直线l:x+y-1=0切于点P(3,-2)的圆的方程,并找出圆的圆心及半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:抛物线方程;y2=2px(p>0),经过原点O的直线;x+3y=0与抛物线交于点A,点B在抛物线上,且直线OB⊥OA,△AOB的面积为60.求:
(1)抛物线的方程;
(2)直线AB的方程.

查看答案和解析>>

同步练习册答案