精英家教网 > 高中数学 > 题目详情

如图棱柱的侧面是菱形,,D是的中点,证明:

(Ⅰ)∥面
(Ⅱ)平面平面.

(Ⅰ)详见解析;(Ⅱ)详见解析.

解析试题分析:(Ⅰ)证明直线∥面,只需在面内找一条直线,与平行,如图所示,设,连接,则中,是中位线,所以,∴∥面
(Ⅱ)要证明平面平面,只需在一个平面内找到另一个平面的一条垂线,由已知,,又四边形是菱形,∴,从而,所以平面平面.

试题解析:(Ⅰ)设,连接,则中,分别是的中点,∴是中位线,所以,又,∴∥面
(Ⅱ) ∵四边形是菱形,∴,又,且,∴,又,∴平面平面
考点:1、线面平行的判定;2、面面垂直的判定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知三棱锥的侧棱两两垂直,且的中点.

(1)求点到面的距离;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,平面⊥平面是线段上一点,

(Ⅰ)证明:⊥平面
(Ⅱ)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求证:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直四棱柱ABCD-A1B1C1D1的底面ABCD为平行四边形,其中AB=, BD=BC=1, AA1=2,E为DC的中点,F是棱DD1上的动点.

(1)求异面直线AD1与BE所成角的正切值;
(2)当DF为何值时,EF与BC1所成的角为90°?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥底面是平行四边形,面,,,分别为的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,,平面⊥底面的中点,是棱上的点,

(Ⅰ)求证:平面⊥平面
(Ⅱ)若为棱的中点,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,底面为直角梯形,的中点.

(1)求证:平面
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为矩形,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

查看答案和解析>>

同步练习册答案