【题目】甲、乙两人玩锤子、剪刀、布的猜拳游戏,假设两人都随机出拳,求:
(1)平局的概率;
(2)甲赢的概率;
(3)甲不输的概率.
【答案】(1);(2);(3).
【解析】
确定所有的基本事件数,分别以表示出拳为锤子,表示出拳为剪刀,表示出拳为布.
(1)列举出事件“平局”所包含的基本事件,然后利用古典概型的概率公式可求出该事件的概率;
(2)列举出事件“甲赢”所包含的基本事件,然后利用古典概型的概率公式可求出该事件的概率;
(3)利用互斥事件的概率加法公式可求出事件“甲不输”的概率.
因为甲有种不同的出拳方法,乙同样也有3种不同的出拳方法,因此一次出拳共有种不同的可能.
因为都是随机出拳,所以可以看成古典概型,而且样本空间中共包含个样本点,
因为锤子赢剪刀,剪刀赢布,布赢锤子,分别以表示出拳为锤子,表示出拳为剪刀,表示出拳为布,记事件为“平局”,为“甲赢”.
(1)事件包含的基本事件有:、、,共个基本事件,因此;
(2)事件包含的基本事件有:、、,共个基本事件,因此;
(3)因为表示“甲不输”,且、互斥,因此所求概率为.
科目:高中数学 来源: 题型:
【题目】判断下列函数的奇偶性:
(1)f(x)=x+1;
(2)f(x)=x3+3x,x∈[-4,4);
(3)f(x)=|x-2|-|x+2|;
(4)f(x)=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高校学生平均每天使用手机的时间长短是否与性别有关,某调查小组随机抽取了25 名男生、10名女生进行为期一周的跟踪调查,调查结果如表所示:
平均每天使用手机小时 | 平均每天使用手机小时 | 合计 | |
男生 | 15 | 10 | 25 |
女生 | 3 | 7 | 10 |
合计 | 18 | 17 | 35 |
(I) 根据列联表判断,是否有90%的把握认为学生使用手机的时间长短与性别有关;
(II)在参与调查的平均每天使用手机不超过3小时的10名男生中,有6人使用国产手机,从这10名男生中任意选取3人,求这3人中使用国产手机的人数的分布列和数学期望.
0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若方程 所表示的曲线为C,给出下列四个命题:
①若C为椭圆,则;
②若C为双曲线,则或;
③曲线C不可能是圆;
④若,曲线C为椭圆,且焦点坐标为;
⑤若,曲线C为双曲线,且虚半轴长为.
其中真命题的序号为____________.(把所有正确命题的序号都填在横线上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在最强大脑的舞台上,为了与国际X战队PK,假设某季Dr.魏要从三名擅长速算的选手A1,A2,A3,三名擅长数独的选手B1,B2,B3,两名擅长魔方的选手C1,C2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C1已确定入选,而擅长速算与数独的选手入选的可能性相等.
(Ⅰ)求A1被选中的概率;
(Ⅱ)求A1,B1不全被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C:x2-y2=1及直线l:y=kx-1.
(1)若l与C有两个不同的交点,求实数k的取值范围;
(2)若l与C交于A,B两点,O为坐标原点,且△AOB的面积为,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若,在上恒成立,求的取值范围;
(2)设数列,为数列的前项和,求证:;
(3)当时,设函数的图象与函数的图象交于点,,过线段的中点作轴的垂线分别交,于点,问是否存在点,使在处的切线与在处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(=1,2,…,6),如表所示:
试销单价(元) | 4 | 5 | 6 | 7 | 8 | 9 |
产品销量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知.
(Ⅰ)求出的值;
(Ⅱ)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程;
(参考公式:线性回归方程中,的最小二乘估计分别为,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com