精英家教网 > 高中数学 > 题目详情
如果sin(α+π)cos(α-π)=
1
2
,则tanα=(  )
A、-1
B、
3
3
C、±1
D、1
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:由条件利用诱导公式求得sinαcosα=
1
2
,再利用同角三角函数的基本关系求得tanα的值.
解答: 解:由于sin(α+π)cos(α-π)=-sinα•(-cosα)=sinαcosα=
1
2

1
2
=
sinαcosα
sin2α+cos2α
=
tanα
tan2α+1
,求得tanα=1,
故选:D.
点评:本题主要考查同角三角函数的基本关系的应用,诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等比数列{an}中,若a3a5a7a9a11=243,求
a9
q2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={(x,y)|x2+y2=0},B={(x,y)|xy=0},则下列结论正确的是(  )
A、A∩B=∅
B、A∩B={0,0}
C、A?B
D、A=B

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x-2
x-2
在区间[2,11]上的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(
π
2
+θ)+cos(
π
2
-θ)=
1
5
(θ∈(0,π)),则tanθ=(  )
A、-
4
3
B、
4
3
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,f(x)=x+alnx,若对区间(
1
2
,1)
内的任意两个相异实数x1,x2,恒有|f(x1)-f(x2)|>|
1
x1
-
1
x2
|,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={1,x},B={0,1},且A=B,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2ax-1,x∈[-2,2],
(1)当a=1时,求f(x)的最大与最小值;  
(2)求实数a的取值范围,使函数f(x)在[-2,2]上不是单调函数;    
(3)求函数f(x)的最大值g(a),并求g(a)的最小值.

查看答案和解析>>

同步练习册答案