精英家教网 > 高中数学 > 题目详情
关于函数(1)y=x2和(2)y=2x的下列说法正确的是(  )

A. (1)和(2)都是指数函数

B. (1)和(2)都不是指数函数

C. (1)是指数函数,(2)不是

D. (2)是指数函数,(1)不是

解析:由指数函数特征知(1)不是,(2)是.

答案:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
];
②函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-
1
2
1
2
]上是增函数.
其中正确的命题的序号
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=4sin(πx+
π
3
),x∈R,有下列命题:
①对任意x∈R,有f(x+1)=-f(x)成立;
②y=f(x)在区间[0,1]上的最小值为-4;
③y=f(x)的图象关于点(-
1
3
,0)对称;
④y=f(x)的图象关于直线x=
π
6
对称.
其中正确的命题的序号是
 
.(注:把你认为正确的命题的序号都填上.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
];
②函数y=f(x)在[-
1
2
1
2
]上是增函数;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称.
其中正确命题的序号是
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•盐城一模)给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x},即 {x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
(1)y=f(x)的定义域是R,值域是[0,
1
2
]
(2)y=f(x)是周期函数,最小正周期是1
(3)y=f(x)的图象关于直线x=
k
2
(k∈Z)对称
(4)y=f(x)在[-
1
2
1
2
]
上是增函数   
则其中真命题是
(1)、(2)、(3)
(1)、(2)、(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•密云县一模)给出定义:若m-
1
2
<x≤m+
1
2
(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)的定义域为R,值域为[0,
1
2
]

②函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④函数y=f(x)在[-
1
2
1
2
]
上是增函数.
其中正确的命题的个数为(  )

查看答案和解析>>

同步练习册答案