精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面四边形ABCD中,△BCD是正三角形,AB=AD=1,∠BAD=θ.
(Ⅰ)将四边形ABCD的面积S表示成关于θ的函数;
(Ⅱ)求S的最大值及此时θ的值.

【答案】解:(Ⅰ)BD=


(0<θ<π).
(Ⅱ)由(Ⅰ)得==
∵0<θ<π,∴
时,即时,S有最大值1+
【解析】(Ⅰ)在△ABD中,根据余弦定理可表示BD,根据S=absinc可表示出△ABD,△BCD的面积,从而表示出四边形ABCD的面积;
(Ⅱ)由(Ⅰ)可把四边形面积S化为S=Asin(ωx+φ)+B形式,根据三角函数的有界性可求其最值.
【考点精析】根据题目的已知条件,利用函数的最值及其几何意义的相关知识可以得到问题的答案,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个包装箱内有6件产品,其中4件正品,2件次品。现随机抽出两件产品.(要求罗列出所有的基本事件)

(1)求恰好有一件次品的概率。

(2)求都是正品的概率。

(3)求抽到次品的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面底面平分的中点,分别为上一点,且.

(1)若,证明:平面.

(2)过点作平面的垂线,垂足为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为,实验30天共投入实验费用17700元.

(1)求的值及平均每天耗资最少时实验的天数;

(2)现有某知名企业对该项实验进行赞助,实验天共赞助.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一长为24米的篱笆,一面利用墙(墙最大长度是10米)围成一个矩形花圃,设该花圃宽AB为x米,面积是y平方米,

(1)求出y关于x的函数解析式,并指出x的取值范围;

(2)当花圃一边AB为多少米时,花圃面积最大?并求出这个最大面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)若 , 试求f(x)在区间[﹣2,6]上的最值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与y轴的正半轴相交于点M,且椭圆E上相异两点A、B满足直线MA,MB的斜率之积为

(Ⅰ)证明直线AB恒过定点,并求定点的坐标;

(Ⅱ)求三角形ABM的面积的最大值.

查看答案和解析>>

同步练习册答案