精英家教网 > 高中数学 > 题目详情
10.已知$f(x)=1+ln({\sqrt{{x^2}-2x+2}-x+1})$,则f(-12)+f(14)=2.

分析 先求出f(-12)=1+ln($\sqrt{170}+13$),f(14)=1+ln($\sqrt{170}-13$),由此利用对数性质能求出f(-12)+f(14)的值.

解答 解:∵$f(x)=1+ln({\sqrt{{x^2}-2x+2}-x+1})$,
∴f(-12)=1+ln($\sqrt{144+24+2}$+12+1)=1+ln($\sqrt{170}+13$),
f(14)=1+ln($\sqrt{196-28+2}$-14+1)=1+ln($\sqrt{170}-13$),
∴f(-12)+f(14)=2+[ln($\sqrt{170}+13$)+ln($\sqrt{170}$-13)]=2+ln1=2.
故答案为:2.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)上一点到两焦点间的距离之和为2$\sqrt{2}$,直线4x-3y+3=0被以椭圆C的短轴为直径的圆M截得的弦长为$\frac{8}{5}$.
(1)求椭圆C的方程;
(2)若椭圆C上存在两个不同的点A,B,关于直线l:y=-$\frac{1}{k}$(x+$\frac{1}{2}$)对称.且:△AOB面积为$\frac{\sqrt{6}}{4}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(2cosx,sinx-cosx),$\overrightarrow{b}$=($\sqrt{3}$sinx,sinx+cosx),记函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求f(x)的表达式,以及f(x)取最大值时x的取值集合;
(Ⅱ)设△ABC三内角A,B,C的对应边分别为a,b,c,若a+b=2$\sqrt{3}$,c=$\sqrt{6}$,f(C)=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在数列{an}中,a1=1,${a_n}=1+\frac{{{{(-1)}^n}}}{{{a_{n-1}}}}$(n≥2),则a5=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(1)若DE∥平面A1MC1,求$\frac{CE}{EB}$;
(2)求证:平面B1MC1⊥平面A1MC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若?(p∧q)为假命题,则(  )
A.p为真命题,q为假命题B.p为假命题,q为假命题
C.p为真命题,q为真命题D.p为假命题,q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P-AE-C为120°,设点P在面ABE上的射影为H.
(1)证明:点H为EB的中点;
(2)若$AB=AC=2\sqrt{2},AB⊥AC$,求H到平面ABP的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.2016年1月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X~N(100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的$\frac{3}{4}$,则此次统考中成绩不低于120分的学生人数约为(  )
A.80B.100C.120D.200

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x3+ax2+bx+c,x∈[-2,2]表示过原点的曲线,且在x=±1处的切线的倾斜角均为$\frac{3}{4}π$,有以下命题:
①f(x)的解析式为f(x)=x3-4x,x∈[-2,2].
②f(x)的极值点有且只有一个.
③f(x)的最大值与最小值之和等于零.
其中正确命题的序号为①③.

查看答案和解析>>

同步练习册答案