精英家教网 > 高中数学 > 题目详情
若关于x的方程2cos2x-sinx+a=0有实根,则a的取值范围是
 
分析:根据已知方程表示出a,利用同角三角函数间的基本关系变形,利用二次函数的性质及正弦函数的值域求出a的最大值与最小值,即可确定出a的范围.
解答:解:已知方程变形得:2-2sin2x-sinx+a=0,
即a=2sin2x+sinx-2=2(sinx+
1
4
2-
17
8

∵-1≤sinx≤1,
∴当sinx=-
1
4
时,a取得最小值-
17
8

当sinx=1时,a取得最大值1,
则a的取值范围是[-
17
8
,1].
故答案为:[-
17
8
,1].
点评:此题考查了同角三角函数间基本关系,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(1,1),
q
=(1,0),<
n
p
>=
π
2
m
n
=-1;若△ABC的内角A,B,C依次成等差数列,且A≤B≤C;
(1)若关于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相异实根,求实数m的取值范围;
(2)若向量
p
=(cosA,2cos2
C
2
),试求|
n
+
p
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•九江二模)已知函数f(x)=sin(
π
4
x-
π
6
)-2cos2
π
8
x+1,x∈R

(1)求函数f(x)的最小正周期及单调递增区间;
(2)若关于x的方程4f2(x)-mf(x)+1=0在x∈(
4
3
,4)
内有实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程2cos2(π+x)-sinx+a=0有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量数学公式=(1,1),数学公式=(1,0),<数学公式数学公式>=数学公式数学公式=-1;若△ABC的内角A,B,C依次成等差数列,且A≤B≤C;
(1)若关于x的方程sin(2x+数学公式 )=数学公式 在[0,B]上有相异实根,求实数m的取值范围;
(2)若向量数学公式=(cosA,2cos2 数学公式),试求|数学公式|的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
m
=(1,1),
q
=(1,0),<
n
p
>=
π
2
m
n
=-1;若△ABC的内角A,B,C依次成等差数列,且A≤B≤C;
(1)若关于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相异实根,求实数m的取值范围;
(2)若向量
p
=(cosA,2cos2
C
2
),试求|
n
+
p
|的取值范围.

查看答案和解析>>

同步练习册答案