精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|1-
1
x
|
,(x>0).
(Ⅰ)当0<a<b,且f(a)=f(b)时,求证:ab>1;
(Ⅱ)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
(Ⅲ)若存在实数a,b(a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb](m≠0),求m的取值范围.
(I)证明:∵x>0,∴f(x)=
1-
1
x
,x≥1
1
x
-1,0<x<1.

∴f(x)在(0,1)上为减函数,在(1,+∞)上是增函数.
由0<a<b,且f(a)=f(b),可得 0<a<1<b和
1
a
-1=1-
1
b
,即
1
a
+
1
b
=2

∴2ab=a+b>2
ab
.…(3分)
ab
>1
,即ab>1.…(4分)
(II)不存在满足条件的实数a,b.
若存在满足条件的实数a,b,使得函数y=f(x)=|1-
1
x
|
的定义域、值域都是[a,b],
则a>0,f(x)=
1-
1
x
,x≥1
1
x
-1,0<x<1.

①当a,b∈(0,1)时,f(x)=
1
x
-1
在(0,1)上为减函数.
f(a)=b
f(b)=a.
,即
1
a
-1=b
1
b
-1=a.
,解得a=b.
故此时不存在适合条件的实数a,b.…(6分)
②当a,b∈[1,+∞)时,f(x)=1-
1
x
在(1,+∞)上是增函数.
f(a)=a
f(b)=b.
,即
1-
1
a
=a
1-
1
b
=b.

此时a,b是方程x2-x+1=0的根,此方程无实根.
故此时不存在适合条件的实数a,b.…(8分)
③当a∈(0,1),b∈[1,+∞)时,由于1∈[a,b],而f(1)=0∉[a,b],
故此时不存在适合条件的实数a,b.
综上可知,不存在适合条件的实数a,b.…(10分)
(III)若存在实数a,b(a<b),使得函数y=f(x)的定义域为[a,b]时,值域为[ma,mb].
则a>0,m>0.
①当a,b∈(0,1)时,由于f(x)在(0,1)上是减函数,故
1
a
-1=mb
1
b
-1=ma.

此时刻得a,b异号,不符合题意,所以a,b不存在.
②当a∈(0,1)或b∈[1,+∞)时,由( II)知0在值域内,值域不可能是[ma,mb],所以a,b不存在.
故只有a,b∈[1,+∞).
f(x)=|1-
1
x
|
在[1,+∞)上是增函数,
f(a)=ma
f(b)=mb.
,即
1-
1
a
=ma
1-
1
b
=mb.

∴a,b是方程mx2-x+1=0的两个根,即关于x的方程mx2-x+1=0有两个大于1的实根.…(12分)
设这两个根为x1,x2,则x1+x2=
1
m
,x1•x2=
1
m

△>0
(x1-1)+(x2-1)>0
(x1-1)(x2-1)>0.
,即
1-4m>0
1
m
-2>0.

解得0<m<
1
4

故m的取值范围是0<m<
1
4
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案