精英家教网 > 高中数学 > 题目详情
若直线y=k(x-2)+1与曲线y=-
1-x2
有两上不同的交点,则k的取值范围是(  )
A.[1,
4
3
]
B.[1,
4
3
)
C.(
3
4
,1]
D.(0,
4
3
)
∵直线y=k(x-2)+1是过A(2,1)的直线,
曲线y=-
1-x2
是圆心在原点,半径为1,y≤0的半圆,
∴作出如图图形:
当直线y=k(x-2)+1与半圆相切,C为切点时,圆心到直线l的距离d=r,
|k×0-0-2k+1|
k2+1
=1

解得:k=
4
3

当直线y=k(x-2)+1过B(1,0)点时,直线l的斜率k=
1-0
2-1
=1,
∵直线y=k(x-2)+1与曲线y=-
1-x2
有两上不同的交点,
∴k的取值范围是[1,
4
3
).
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;
(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+2与曲线y=
x2-1
,|x|>1
1-x2
,|x|≤1
恰有两个不同的交点,则k∈______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线x=-1与椭圆相交于A、B两点,P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线l:x=-4于两点Q、R,求证
OQ
OR
为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将曲线C1:(x-4)2+y2=4所有点的横坐标不变,纵坐标变为原来的
1
2
得到曲线C2,将曲线C2向左(x轴负方向)平移4个单位,得到曲线C3
(Ⅰ)求曲线C3的方程;
(Ⅱ)垂直于x轴的直线l与曲线C3相交于C、D两点(C、D可以重合),已知A(-2,0),B(2,0),直线AC、BD相交于点P,求P点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点y在轴上,焦距为2
3
,且过点M(-
13
4
3
2
)

(1)求椭圆C的方程;
(2)若过点N(
1
2
,1)
的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C1x2-
y2
4
=1

(1)求与双曲线C1有相同焦点,且过点P(4,
3
)的双曲线C2的标准方程;
(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当
OA
OB
=3
时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线l与椭圆
x2
36
+
y2
9
=1
交于A和B两点,点(4,2)是线段AB的中点,则直线l的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P(2,-1)平分椭圆
x2
12
+
y2
8
=1
的一条弦,则该弦所在的直线方程为______.(结果写成一般式)

查看答案和解析>>

同步练习册答案