精英家教网 > 高中数学 > 题目详情

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则=  (       )

A   2      B             C  1                          D 

C  


解析:

因为数列{log2(an-1)}(n∈N*)为等差数列,∴

故设log2(an+1-1)-log2(an-1)=d

a1=3,a2=5,故d=1

,

故{an-1}是首项为2,公比为2的等比数列,

an-1=2n,∴an=2n+1,∴an+1an=2n

=

=1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=(  )
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9
(1)求数列{an}的通项公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N+)为等差数列,且a1=3,a2=5,则
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步练习册答案