精英家教网 > 高中数学 > 题目详情
精英家教网如图,正方体ABCD-A1B1C1D1的棱长为1,点M在AB上,且AM=
13
,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xoy中,动点P的轨迹方程是
 
分析:以AB,AD,AA1 为x轴,y轴,z轴,建立空间坐标系,设P(x,y,0),由题意可得 M(
1
3
,0,0),由题意
可得(y2+1)-[(x-
1
3
)
2
+(y-0)2
]=1,化简可得结果.
解答:解:作PN⊥AD,则PN⊥面A1D1DA,作 NH⊥A1D1 ,N,H为垂足则由三垂线定理可得 PH⊥A1D1
以AB,AD,AA1 为x轴,y轴,z轴,建立空间坐标系,设P(x,y,0),由题意可得 M(
1
3
,0,0).
再由PN2+NH2=PH2,PH2-PM2=1,可得 PN2+NH2-PM2=1,
即 x2 +1-[(x-
1
3
)
2
+(y-0)2
]=1,化简可得y2=
2
3
x-
1
9

故答案为y2=
2
3
x-
1
9
点评:本题考查点轨迹方程的求法,得到 x2+1-[(x-
1
3
)
2
+(y-0)2
]=1,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案