精英家教网 > 高中数学 > 题目详情

【题目】已知,设命题:函数上单调递减,命题:对任意实数,不等式恒成立.

(1)写出命题的否定,并求非为真时,实数的取值范围;

(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.

【答案】(1);(2)的取值范围是.

【解析】分析:(1)根据命题的否定的改写方法即可,非为真,即存在实数 ,

使得不等式成立.故即可;(2)此题是由命题的真假求参数的题目,可先求出每个命题为真时的参数的取值范围,再根据命题“p∨q”为真命题,“p∧q”为假命题,判断出两个命题的真假关系,从而确定出实数c的取值范围

详解:

(1)命题 的否定是:存在实数 ,

使得不等式成立.

为真时,,即,又

所以.

(2)若命题为真,则

若命题为真,则

因为命题为真命题,为假命题,

所以命题一真一假,若假,则 所以

真,则,所以.

综上:的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)当a=0时,求f(x)的单调区间;
(2)若函数f(x)在其定义域内有两个不同的极值点.
(ⅰ)求a的取值范围;
(ⅱ)设两个极值点分别为x1 , x2 , 证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos4x+sin2x,下列结论中错误的是(
A.f(x)是偶函数
B.函f(x)最小值为
C. 是函f(x)的一个周期
D.函f(x)在(0, )内是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点D在边BC的延长线上,且BC=2CD,AD=

(1)求CD的长;
(2)求sin∠BAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,F为椭圆E:的右焦点,过F作两条相互垂直的直线AB,CD,与椭圆E分别交于A,B和点C,D.

(1)当AB=时,求直线AB的方程;

(2)直线AB交直线x=3于点M,OM与CD交于P,CO与椭圆E交于Q,求证:OM∥DQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}(n∈N*)是公差不为0的等差数列,a1=1,且 成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{ }的前n项和为Tn , 求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为坐标原点,是抛物线上异于的两点.

(1)求抛物线的方程;

(2)若直线的斜率之积为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC内角A,B,C的对边分别是a,b,c,且满足a( sinC+cosC)=b+c.
(I) 求角A的大小;
(Ⅱ)已知函数f(x)=sin(ωx+A)的最小正周期为π,求f(x)的减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化肥厂生产甲、乙两种混合肥料,需要ABC三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:

现有A种原料200吨,B种原料360吨,C种原料300吨.在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用xy表示计划生产甲、乙两种肥料的车皮数.

(1)用xy列出满足生产条件的数学关系式,并画出相应的平面区域;

(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.

查看答案和解析>>

同步练习册答案