精英家教网 > 高中数学 > 题目详情

【题目】三棱锥ABCD中,BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O为BD的中点,P、Q分别为线段AO,BC上的动点,且AP=CQ,求三棱锥PQCO体积的最大值.

【答案】解:如图所示,∵BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O为BD的中点,
∴AO⊥平面BCD,
AO=OC=1,∠OCB=45°.
设AP=x(0<x<1).
= = x.
∴三棱锥PQCO体积V=
=
= = ,当且仅当x= 时取等号.
∴三棱锥PQCO体积的最大值是

【解析】如图所示,由于BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O为BD的中点,可得AO⊥平面BCD,AO=OC=1,∠OCB=45°.设AP=x(0<x<1).利用三棱锥PQCO体积V= 及其基本不等式的性质即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于实数x的不等式﹣x2+bx+c<0的解集是{x|x<﹣3或x>2},则关于x的不等式cx2﹣bx﹣1>0的解集是(
A.(﹣
B.(﹣2,3)
C.(﹣∞,﹣ )∪( ,+∞)
D.(﹣∞,﹣2)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10﹣ ,t∈[0,24)
(Ⅰ)求实验室这一天的最大温差;
(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年5月20日,针对部分“二线城市”房价上涨过快,媒体认为国务院常务会议可能再次确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):

月收入(百元)

赞成人数

[15,25)

8

[25,35)

7

[35,45)

10

[45,55)

6

[55,65)

2

[65,75)

2


(Ⅰ)试根据频率分布直方图估计这60人的中位数和平均月收入;
(Ⅱ)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求被选取的2人都不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.
(1)求AC边所在直线方程;
(2)求顶点C的坐标;
(3)求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题P:实数x满足2x2﹣5ax﹣3a2<0,其中a>0,命题q:实数x满足
(1)若a=2,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以 为一条渐近线的双曲线C的右焦点为
(1)求该双曲线C的标准方程;
(2)若斜率为2的直线l在双曲线C上截得的弦长为 ,求l的方程.

查看答案和解析>>

同步练习册答案