精英家教网 > 高中数学 > 题目详情
20.当实数k变化时,对于方程(2|x|-1)2-(2|x|-1)-k=0的解的判断不正确的是(  )
A.$k<-\frac{1}{4}$时,无解B.$k=-\frac{1}{4}$时,有2个解
C.$-\frac{1}{4}<k≤0$时,有4个解D.k>0时,有2个解

分析 令令t=2|x|-1,则t∈[0,+∞),方程即k=t2-t∈[-$\frac{1}{4}$,+∞),再利用二次函数的性质判断各个选项是否正确,从而得出结论.

解答 解:令t=2|x|-1,则t∈[0,+∞),
方程即 t2-t-k=0,即 k=t2-t.
由于t2-t=(t-$\frac{1}{2}$)2-$\frac{1}{4}$≥-$\frac{1}{4}$,
当t=$\frac{1}{2}$时,取得最小值-$\frac{1}{4}$,
当k<-$\frac{1}{4}$时,方程无解,故A正确;
当k=-$\frac{1}{4}$时,方程有两解,且为x=±log2$\frac{3}{2}$,故B正确;
当k>0时,方程t2-t-k=0的判别式△=1+4k>0,两根异号,
则方程有两解,故D正确;
当k=0时,方程即为t2-t=0,求得t=0,或t=1,
此时x=0或±1,有三个解,故C不正确.
故选C.

点评 本题主要考查方程根的存在性及个数的判断,体现了转化、分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若角α、β的终边关于直线x+y=0对称,且α=-60°,则β={ β|β=330°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设F是椭圆$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1的右焦点,点$A(\frac{1}{2},1)$,M是椭圆上一动点,则当$\sqrt{7}MA+7MF$取最小值时,M点坐标为($\frac{\sqrt{210}}{6}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=sin(ωx+φ)(ω>0).若f(x)的图象向左平移$\frac{π}{3}$个单位所得的图象与f(x)的图象重合,则ω的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知x2+y2=4x,则x2+y2的取值范围是[0,16].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,既是定义域上的奇函数又在区间(0,1)内单调递增的是(  )
A.$y=x+\frac{1}{x}$B.y=xsinx+cosxC.$y={e^x}-\frac{1}{e^x}$D.$y=ln\frac{1-x}{1+x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}满足an+1=3an+1,且a1=1,则数列{an}的通项公式an=$\frac{1}{2}$•(3n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若x=4,则输出的y=(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案