精英家教网 > 高中数学 > 题目详情
精英家教网如图,△ABC 为正三角形,EC⊥平面ABC,BD∥CE,CE=CA=2BD,N 是EA 的中点,求证:
(1)DE=DA;
(2)平面BDN⊥平面ECA;
(3)平面DEA⊥平面ECA.
分析:对于(1)可以通过作辅助线,取CE中点F,CA中点M,连接DF,由CE=CA=2BD,容易证明Rt△DEF≌Rt△ABD;
对于(2),由EC⊥平面ABC,容易得到BM⊥CE,又M为正三角形ABC边CA的中点,故BM⊥AC,容易得到BM⊥平面ECA,从而得证;
对于(3),由于N是EA的中点,容易得到DN∥BM,而BM⊥平面ECA,从而得证.
解答:证明:(1)如图,取EC中点F,连接DF.
∵EC⊥平面ABC,BD∥CE,得DB⊥平面ABC.精英家教网
∴DB⊥AB,EC⊥BC.
∵BD∥CE,BD=
1
2
CE=FC,则四边形FCBD是矩形,
∴DF⊥EC.
又BA=BC=DF,
∴Rt△DEF≌Rt△ABD,所以DE=DA.
(2)取AC中点M,连接MN、MB,∵N是EA的中点,
∴MN=
1
2
EC.由BD=
1
2
EC,且BD⊥平面ABC,可得四边形
MNBD是矩形,于是DN∥BM.
∵DE=DA,N是EA的中点,∴DN⊥EA.又EA∩MN=N,
∴DN⊥平面ECA,而DN?平面BDN,则平面ECA⊥平面BDN.
(3)∵DN⊥平面ECA,DN?平面DEA,
∴平面DEA⊥平面ECA.
点评:本题考查空间中线段相等问题及平面与平面垂直的问题,线段相等要转化为平面内三角形全等问题解决;面面垂直转化为线面垂直解决,同时注意使用线面垂直的判定定理及性质定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,平面ABD和平面A1B1C的交线为MN.
(Ⅰ)试证明AB∥MN;
(Ⅱ)若直线AD与侧面BB1C1C所成的角为45°,试求二面角A-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点.
(1)试确定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大小;
(3)在(2)的条件下,求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的各条棱长均为2,M是BC的中点.
(Ⅰ)求证:A1C∥平面AB1M;
(Ⅱ)求证在棱CC1上找一点N使得MN⊥AB1
(Ⅲ)在(Ⅱ)的条件下,求二面角M-AB1-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为棱A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小;
(Ⅲ)在(Ⅱ)的条件下,求点C1到面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是正四面体V-ABC的面VBC上一点,点P到平面ABC距离与到点V的距离相等,则动点P的轨迹是(  )

查看答案和解析>>

同步练习册答案