精英家教网 > 高中数学 > 题目详情

【题目】已知曲线,对坐标平面上任意一点,定义,若两点,,满足,称点,在曲线同侧;,称点,在曲线两侧.

(1)直线过原点,线段上所有点都在直线同侧,其中,求直线的倾斜角的取值范围;

(2)已知曲线为坐标原点,求点集的面积;

(3)记到点与到轴距离和为的点的轨迹为曲线,曲线,若曲线上总存在两点,在曲线两侧,求曲线的方程与实数的取值范围.

【答案】(1)(2);(3.

【解析】

1)由题意设出直线方程为,通过新定义,得到,求出斜率范围,进而可求出倾斜角范围;

2)先由题意得到点集为圆在直线下方内部,设直线与圆的交点为,求出,进而可求出结果;

3)先设曲线上的动点为,根据题意得到,化简整理,即可得出轨迹方程;再由新定义,将化为,进而可得出结果.

1)由题意,显然直线斜率存在,设方程为,则

因为,线段上所有点都在直线同侧,

解得;故倾斜角的范围是

2)因为,所以

,点集为圆在直线下方内部,

设直线与圆的交点为,则的距离为

因此,所求面积为:

3)设曲线上的动点为,则

化简得曲线的方程为:

其轨迹为两段抛物线弧;

时,

时,

故若有

,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x-4)exa(x+2)2(x>0,aR,e是自然对数的底数).

(1)f(x)(0,+∞)上的单调递增函数,求实数a的取值范围;

(2)a时,证明:函数f(x)有最小值,并求函数f(x)的最小值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)当时,求使得等式成立的的取值范围;

2)当时,求使得等式成立的的取值范围;

3)求的区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体均垂直于平面

(1)证明:⊥平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为整数的无穷数列满足:,且对所有均成立.

(1)写出的所有可能值(不需要写计算过程);

(2)若是公差为1的等差数列,求的通项公式;

(3)证明:存在满足条件的数列,使得在该数列中,有无穷多项为2019.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根),称为的特征根.

(1)讨论函数的奇偶性,并说明理由;

(2)已知为给定实数,求的表达式;

(3)把函数的最大值记作,最小值记作,研究函数的单调性,令,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一列函数,设直线的交点为,点轴和直线上的射影分别为,记的面积为的面积为.

1)求的最小值,并指出此时的取值;

2)在中任取一个函数,求该函数在上是增函数或在上是减函数的概率;

3)是否存在正整数,使得成立,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社会机构为了调查对手机游戏的兴趣与年龄的关系,通过问卷调查,整理数据得如下列联表:

1)根据列联表,能否有99.9%的把握认为对手机游戏的兴趣程度与年龄有关?

2)若已经从40岁以下的被调查者中用分层抽样的方式抽取了5名,现从这5名被调查者中随机选取3名,求这3名被调查者中恰有1名对手机游戏无兴趣的概率.

附:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

同步练习册答案