精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数

(1)求函数的解析式,并求出的定义域;

(2)设,试求函数的定义域,及最值.

【答案】1fx)=log3x+2)﹣1,定义域[17]gx)=log3x+2,定义域[19];(2)定义域[13],最小值6,最大值13.

【解析】

1)令t3x2,则xlog3t+2)﹣1,根据已知可求fx),进而可求gx);

2)结合(1)可求hx),然后结合函数的定义域的要求有,解出x的范围,结合二次函数的性质可求.

1)令t3x2,则xlog3t+2)﹣1,∵x[02],∴t[18]

f3x2)=x1x[02]),∴ft)=log3t+2)﹣1t[17]

fx)=log3x+2)﹣1x[17],即fx)的定义域[17]

gx)=fx2+3log3x+2,∴x2[17],∴x[19],即gx)的定义域[19]

2)∵hx)=[gx]2+gx2)=(log3x+22+26log3x+6

,∴1≤x≤3,即函数yhx)的定义域[13],∵0≤log3x≤1

结合二次函数的性质可知,当log3x0时,函数取得最小值6

log3x1时,函数取得最大值13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 已知函数f(x)=|xa|+|x-2|.

(1)a=-3时,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】业界称中国芯迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为(为常数)元,之后每年会投入一笔研发资金,年后总投入资金记为,经计算发现当时,近似地满足,其中为常数,.已知年后总投入资金为研发启动时投入资金的倍.问

1)研发启动多少年后,总投入资金是研发启动时投入资金的倍;

2)研发启动后第几年的投入资金的最多.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额 (百元)的频率分布直方图如图所示:

(1)求网民消费金额的平均值和中位数

(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关;

合计

30

合计

45

附表:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)讨论函数的单调性;

(2)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)讨论的单调性;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为R,并且图象关于y轴对称,当x≤-1时,yf(x)的图象是经过点(-2,0)(-1,1)的射线,又在yf(x)的图象中有一部分是顶点在(0,2),且经过点(1,1)的一段抛物线.

(1)试求出函数f(x)的表达式,作出其图象

(2)根据图象说出函数的单调区间,以及在每一个单调区间上函数是增函数还是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,且两个焦点的坐标分别为 .

(1)求的方程;

(2)若 上的三个不同的点, 为坐标原点,且,求证:四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时间著名数学家祖暅提出了祖暅原理:“幂势既同,则积不容异”.意思是:夹在两平行平面间的两个几何体,被平行于这两个平行平面的任何平面所载,若截得的两个截面面积总相等,则这两个几何体的体积相等.为计算球的体积,构造一个底面半径和高都与球半径相等的圆柱,然后再圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,运用祖暅原理可证明此几何体与半球体积相等(任何一个平面所载的两个截面面积都相等).将椭圆 轴旋转一周后得一橄榄状的几何体,类比上述方法,运用祖暅原理可求得其体积等于( )

A. B. C. D.

查看答案和解析>>

同步练习册答案