【题目】已知函数.
(1)若,求曲线在点处的切线;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
【答案】(1);(2);(3).
【解析】试题分析:(1) 当时, ,求导,由求出切线斜率及点,即可求出切线方程;(2)由在定义域区间上恒成立得,利用基本不等式求出函数的最大值,即可求出的取值范围;(3)构造函数,由在区间上,函数至少存在一点使,即由在区间上,求出的范围即可.
试题解析:已知函数.
(1), ,
, , 故切线方程为: .
(2),由在定义域内为增函数,所以在上恒成立,∴即,对恒成立,设, ,
易知, 在上单调递增,在上单调递减,则,
∴,即.
(3)设函数, ,
则原问题在上至少存在一点,使得
,
当时, ,则在上单调递增, ,舍;
当时, ,
∵,∴, , ,则,舍; 当时, ,
则在上单调递增, ,整理得,
综上, .
科目:高中数学 来源: 题型:
【题目】出一份道题的数学试卷,试卷内的道题是这样产生的:从含有道选择题的题库中随机抽道;从道填空题的题库中随机抽道;从道解答题的题库中随机抽道.使用合适的方法确定这套试卷的序号(选择题编号为,填空题编号为,解答题编号为).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的焦距为,点在上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在上,点的轨迹为曲线,过原点作直线与曲线交于、两点,点,证明: 为定值,并求出定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-3x+lnx.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若对于任意的x1,x2∈(1,+∞),x1≠x2,都有恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆和直线: ,椭圆的离心率,坐标原点到直线的距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是长轴长为的椭圆: 上异于顶点的一个动点, 为坐标原点, 为椭圆的右顶点,点为线段的中点,且直线与的斜率之积恒为.
(1)求椭圆的方程;
(2)设过左焦点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,点横坐标的取值范围是,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三条直线l1:4x+y-4=0,l2:mx+y=0,l3:2x-3my-4=0.
(1)若直线l1,l2,l3交于一点,求实数m的值;
(2)若直线l1,l2,l3不能围成三角形,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照5%的比例进行分层抽样,统计结果按, , , , 分组,整理如下图:
(Ⅰ)写出频率分布直方图(图乙)中的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为, ,试比较与的大小(只需写出结论);
(Ⅱ)从甲种酸奶日销售量在区间的数据样本中抽取3个,记在内的数据个数为,求的分布列;
(Ⅲ)估计1200个日销售量数据中,数据在区间中的个数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com