精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,求曲线在点处的切线;

2)若函数在其定义域内为增函数,求正实数的取值范围;

3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

【答案】(1;(2;(3.

【解析】试题分析:(1) 当时, ,求导,由求出切线斜率及点,即可求出切线方程;(2)由在定义域区间上恒成立得,利用基本不等式求出函数的最大值,即可求出的取值范围;(3)构造函数,由在区间上,函数至少存在一点使,即由在区间,求出的范围即可.

试题解析:已知函数.

1

, 故切线方程为: .

2,由在定义域内为增函数,所以上恒成立,,对恒成立,设

易知, 上单调递增,在上单调递减,则

,即.

3)设函数

则原问题上至少存在一点,使得

时, ,则上单调递增, ,舍;

时,

,则,舍; 时,

上单调递增, ,整理得

综上, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】出一份道题的数学试卷试卷内的道题是这样产生的从含有道选择题的题库中随机抽道填空题的题库中随机抽道解答题的题库中随机抽.使用合适的方法确定这套试卷的序号(选择题编号为填空题编号为解答题编号为).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的焦距为,点上.

(Ⅰ)求椭圆的方程;

(Ⅱ)设点上,点的轨迹为曲线,过原点作直线与曲线交于两点,点,证明: 为定值,并求出定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x2-3x+lnx

(Ⅰ)求函数fx)的极值;

(Ⅱ)若对于任意的x1x2∈(1,+∞),x1x2,都有恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)当时,求的最小值;

(2)存在时,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和直线,椭圆的离心率,坐标原点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是长轴长为的椭圆 上异于顶点的一个动点, 为坐标原点, 为椭圆的右顶点,点为线段的中点,且直线的斜率之积恒为.

(1)求椭圆的方程;

(2)设过左焦点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,点横坐标的取值范围是,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三条直线l1:4xy-4=0,l2mxy=0,l3:2x-3my-4=0.

(1)若直线l1l2l3交于一点,求实数m的值;

(2)若直线l1l2l3不能围成三角形,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照5%的比例进行分层抽样,统计结果按 分组,整理如下图:

(Ⅰ)写出频率分布直方图(图乙)中的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为 ,试比较的大小(只需写出结论);

(Ⅱ)从甲种酸奶日销售量在区间的数据样本中抽取3个,记在内的数据个数为,求的分布列;

(Ⅲ)估计1200个日销售量数据中,数据在区间中的个数.

查看答案和解析>>

同步练习册答案