精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥P-ABCD中,PA平面ABCD,菱形ABCD的边长为2,且,点EF分别是PACD的中点,

1)求证:EF平面PBC

2)若PC与平面ABCD所成角的大小为,求C到平面PBD的距离

【答案】1)证明见详解;(2

【解析】

1)取的中点,连接由三角形中位线的性质可证,即可证明平面平面,从而得证结论.

2)将点到面的距离问题转化为求三棱锥的高的问题,利用等体积法即可得到答案.

1)如图取的中点,连接,

因为点EF分别是PACD的中点,

所以分别为中位线,

所以,

,

所以平面平面,所以平面

(2)连接交于点,连接.

设点到平面的距离为

因为菱形ABCD的边长为2,且

所以,且为等边三角形,

所以,,

因为平面

所以即为直线与平面所成的角,

所以,所以,

又四边形为菱形,所以,

所以,所以

,

所以的面积为

所以

依题为三棱锥的高,

的面积为

所以三棱锥的体积为

,

又因为,所以,解得

所以点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】手机运动计步已经成为一种新时尚.某单位统计了职工一天行走步数(单位:百步),绘制出如下频率分布直方图:

1)求直方图中a的值,并由频率分布直方图估计该单位职工一天步行数的中位数;

2)若该单位有职工200人,试估计职工一天行走步数不大于13000的人数;

3)在(2)的条件下,该单位从行走步数大于150003组职工中用分层抽样的方法选取6人参加远足拉练活动,再从6人中选取2人担任领队,求这两人均来自区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有一家大型共享汽车公司,在市场上分别投放了黄、蓝两种颜色的汽车,已知黄、蓝两种颜色的汽车的投放比例为.监管部门为了了解这两种颜色汽车的质量,决定从投放到市场上的汽车中随机抽取5辆汽车进行试驾体验,假设每辆汽车被抽取的时能性相同.

1)求抽取的5辆汽车中恰有2辆是蓝色汽车的概率;

2)在试驾体验过程中,发现蓝色汽车存在一定质量问题,监管部门决定从投放的汽车中随机地抽取一辆送技术部门作进一步抽样检测,并规定:若抽取的是黄色汽车.则将其放回市场,并继续随机地抽取下一辆汽车;若抽到的是蓝色汽车,则抽样结束;并规定抽样的次数不超过次,在抽样结束时,若已取到的黄色汽车数以表示,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线过点,求曲线在点处的切线方程;

2)求函数在区间上的最大值;

3)若函数有两个不同的零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆的离心率等于,抛物线的焦点在椭圆的顶点上.

1)求抛物线的方程;

2)若过的直线与抛物线交于两点,又过作抛物线的切线,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于命题的说法错误的是(

A.命题x23x+20,则x2”的逆否命题为x≠2,则x23x+2≠0”

B.a2”函数fx)=ax在区间(﹣+∞)上为增函数的充分不必要条件

C.命题xR,使得x2+x+10”的否定是:xR,均有x2+x+1≥0”

D.f )=0,则yfx)的极值点为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆方程;

(Ⅱ)设为椭圆右顶点,过椭圆的右焦点的直线与椭圆交于两点(异于),直线分别交直线两点. 求证:两点的纵坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是一个半圆柱与多面体构成的几何体,平面与半圆柱的下底面共面,且 为弧上(不与重合)的动点.

(1)证明: 平面

(2)若四边形为正方形,且 ,求二面角的余弦值.

查看答案和解析>>

同步练习册答案