精英家教网 > 高中数学 > 题目详情

在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.

(Ⅰ)证明AB⊥平面VAD;
(Ⅱ)求面VAD与面VDB所成二面角的大小。

(Ⅰ)见解析(Ⅱ)

解析试题分析:(Ⅰ)因为平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,
又AB在平面ABCD内,AD⊥AB,所以AB⊥平面VAD.                                   …3分
(Ⅱ)由(Ⅰ)知AD⊥AB,AB⊥AV.
依题意设AB=AD=AV=1,所以BV=BD=.                                            …6分
设VD的中点为E,连结AE、BE,则AE⊥VD,BE⊥VD,

所以∠AEB是面VDA与面VDB所成二面角的平面角.                                    …9分
又AE=,BE=,所以

故,面VAD与面VDB所成二面角的大小为.                          …12分
(方法二)
(Ⅰ)同方法一.                                                                 …3分
(Ⅱ)设AD的中点为O,连结VO,则VO⊥底面ABCD.               
又设正方形边长为1,建立空间直角坐标系如图所示.                                 …4分

则,A(,0,0),    B(,1,0),
D(-,0,0),   V(0,0,);
.                                 …7分
由(Ⅰ)知是平面VAD的法向量.设是平面VDB的法向量,则
               …10分
 
由图知,面VAD与面VDB所成的二面角为锐角,
故,面VAD与面VDB所成二面角的大小为.                                 …12分
考点:本小题主要考查空间中线面垂直的证明以及二面角的求法,考查学生的空间想象能力及推理论证能力和计算能力.
点评:本小题的难点在于第二问求二面角,用向量法求解二面角时,要正确判断法向量的方向,同指向二面角内或外则向量夹角与二面角互补,一个指向内另一个指向外则相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在平行四边形中,,将它们沿对角线折起,折后的点变为,且
 
(Ⅰ)求证:平面平面
(Ⅱ)为线段上的一个动点,当线段的长为多少时,与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在四棱锥中,底面ABCD是边长为1的正方形,平面ABCD,PA=AB,M,N分别为PB,AC的中点,
(1)求证:MN //平面PAD          (2)求点B到平面AMN的距离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平行六面体ABCD—A1B1C1D1中,以顶点 A为端点的三条棱 长都等于1,两两夹角都是60°,求对角线AC1的长度. (10分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

( 12分)如图,在四棱锥中,侧面是正三角形,底面是边长为2的正方形,侧面平面的中点.

①求证:平面
②求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 如图,已知平面∩平面=AB,PQ⊥于Q,PC⊥于C,CD⊥于D.

(1)求证:P、C、D、Q四点共面;
(2)求证:QD⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为矩形,且
,(Ⅰ)平面与平面是否垂直?并说明理由;(Ⅱ)求直线与平面所成角的正弦值. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,平面平面是以为斜边的等腰直角三角形,分别为的中点,
(1)设的中点,证明:平面
(2)在内是否存在一点,使平面,若存在,请找出点M,并求FM的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图2)
(1)求二面角G-EF-D的大小;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.

查看答案和解析>>

同步练习册答案