【题目】已知抛物线的顶点是坐标原点,焦点在轴的正半轴上,过焦点且斜率为的直线与抛物线交于两点,且满足.
(1)求抛物线的方程;
(2)已知为抛物线上一点,若点位于轴下方且,求的值.
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD边长为2,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结CF并延长交AB于点E.
(1)求证:AE=EB;
(2)求EFFC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,过点的直线与椭圆相交于两点,且的周长为8.
(1)求椭圆的方程;
(2)若经过原点的直线与椭圆相交于两点,且,试判断是否为定值?若为定值,试求出该定值;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人同时生产内径为的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
从生产的零件内径的尺寸看、谁生产的零件质量较高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,四边形为直角梯形, , , , ,四边形为矩形.
(1)求证:平面平面;
(2)线段上是否存在点,使得二面角的大小为?若存在,确定点的位置并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一动点, 到点的距离减去它到轴距离的差都是.
()求动点的轨迹方程.
()设动点的轨迹为,已知定点、,直线、与轨迹的另一个交点分别为、.
(i)点能否为线段的中点,若能,求出直线的方程,若不能,说明理由.
(ii)求证:直线过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com