精英家教网 > 高中数学 > 题目详情
7.设各项均为正数的等比数列{an}中,a1a3=64,a2+a5=72.
(1)求数列{an}的通项公式;
(2))设${b_n}=\frac{1}{{n{{log}_2}{a_n}}}$,Sn是数列{bn}的前n项和,不等式Sn>loga(a-2)对任意正整数n恒成立,求实数a的取值范围.

分析 (1)利用等比数列的通项公式即可得出.
(2)${b_n}=\frac{1}{{n{{log}_2}{a_n}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂项求和”方法可得Sn=$\frac{n}{n+1}$.数列{Sn}单调递增,因此(Snmin=$\frac{1}{2}$.不等式Sn>loga(a-2)对任意正整数n恒成立,只需loga(a-2)<$\frac{1}{2}$,利用对数函数的单调性即可得出.

解答 (1)解:各项均为正数的等比数列{an}中,即q>0
∵a1a3=$\frac{{a}_{2}}{q}$×a2q=a22=64,∴a2=8
∵a2+a5=72.∴a5=64,即a2q3=64
∴q=2
∴a1=$\frac{{a}_{2}}{q}$=$\frac{8}{2}$=4
∴数列{an}的是首项为2,公比为2的等比数列,
∴数列{an}的通项公式为an=2n+1
(2)解:bn=$\frac{1}{{n{{log}_2}{a_n}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
∴数列{Sn}单调递增,因此(Snmin=$\frac{1}{2}$.
不等式Sn>loga(a-2)对任意正整数n恒成立,
只需loga(a-2)<$\frac{1}{2}$,
由a-2>0得:a>2,∴$a-2<{a}^{\frac{1}{2}}$,a2-5a+4<0,解得:1<a<4,
又a>2,
∴实数a的取值范围是(2,4).

点评 本题考查了等比数列的通项公式、数列的单调性、“裂项求和”方法、对数函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.“m>1”是“方程$\frac{x^2}{m}-\frac{y^2}{m-1}=1$表示双曲线”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点F(1,0),长轴的左、右端点分别为A1,A2;且$\overrightarrow{F{A_1}}•\overrightarrow{F{A_2}}=-1$.
(1)求椭圆E的方程;
(2)已知点B(0,-1),经过点(1,1)且斜率为k的直线与椭圆E交于不同的两P、Q点(均异于点B),证明:直线BP与BQ的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线l1:x+2y+t2=0和直线l2:2x+4y+2t-3=0,则当l1与l2间的距离最短时t的值为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
A.若a∥α,b∥β,则a∥bB.若a?α,b?β,a∥b,则α∥β
C.若a∥b,b∥α,α∥β,则a∥βD.若a⊥α,a⊥β,b⊥β,则b⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于满足0<b<3a的任意实数a,b,函数f(x)=ax2+bx+c总有两个不同的零点,则$\frac{a+b-c}{a}$的取值范围是(  )
A.$({1,\frac{7}{4}}]$B.(1,2]C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“a>b“是“a3>b3”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l1:(3+m)x-4y=5-3m,l2:2x-y=8平行,则实数m的值为(  )
A.5B.-5C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在正方形ABCD中,P为DC边上的动点,设向量$\overrightarrow{AC}=λ\overrightarrow{DB}+μ\overrightarrow{AP}$,则λ+μ的最大值为3

查看答案和解析>>

同步练习册答案