精英家教网 > 高中数学 > 题目详情
平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为
 
考点:平面的法向量
专题:空间向量及应用
分析:利用法向量的夹角与二面角的关系即可得出.
解答: 解:设平面α的法向量为
m
=(1,0,-1),平面β的法向量为
n
=(0,-1,1),
则cos<
m
n
>=
1×0+0×(-1)+(-1)×1
2
2
=-
1
2

∴<
m
n
>=
3

∵平面α与平面β所成的角与<
m
n
>相等或互补,
∴α与β所成的角为
π
3
3

故答案为:
π
3
3
点评:本题考查了利用用法向量的夹角求二面角的方法,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,长方体ABCD-A1B1C1D1的侧面BCC1B1是正方形,E是AB的中点,AB=
2
BC.
(1)求证:BD1⊥平面B1CE;
(2)求二面角C-B1E-A1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有编号为1、2、3号的3个信箱和编号为A、B、C、D的4封信.
(1)若从4封信中任选3封分别投入3个信箱,其中A恰好投入1号信箱的概率是多少?
(2)若4封信可以任意投入信箱,投完为止,其中A恰好投入1号或2号信箱的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(2ωx+
π
3
)+m(m>0,ω>0)的图象y轴右侧的第一个最大值、最小值点分别是P(x0,2+m)和Q(x0+
π
2
,-2+m).
(1)若f(x)在[-
π
4
π
6
]上最大值与最小值的和为5,求m的值;
(2)在(1)的条件下,用“五点法”作出f(x)在[-
π
3
6
]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知顶点在原点,焦点在x轴的负半轴的抛物线截直线y=x+
3
2
所得的弦长|P1P2|=4
2
,求此抛物线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
分别为直线a、b、c的方向向量,且
a
b
(λ≠0),
b
c
=0,则a与c的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(x+1)(x2+ax+b)(a,b∈R)的图象关于点(2,0)对称,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=sinx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移
π
4
个单位,所得函数为g(x).
(1)求函数g(x)的最小正周期和单调递增区间;
(2)求函数g(x)在区间[
π
8
4
]
上的最小值和最大值,并求出取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log
1
3
(3x-x2)的单调递增区间是
 

查看答案和解析>>

同步练习册答案